A New Approximation to Classify the Liquids Measured in Microwave Frequency Range

Yıl: 2019 Cilt: 23 Sayı: 5 Sayfa Aralığı: 724 - 730 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.495640 İndeks Tarihi: 25-11-2019

A New Approximation to Classify the Liquids Measured in Microwave Frequency Range

Öz:
Different classification techniques have been proposed to analyze the measurement results inorder to show that the liquids measured in the microwave frequency range can be separated.Furthermore, it has been shown that the proposed process can be applied successfully withdifferent liquid quantities. Furthermore, the effect of different type containers has beendemonstrated. In this context, five different liquids have been measured between 0.8-5 GHz inthis study, by using ring resonator method. Thus, the ability of the proposed model has beendemonstrated by the success of the measurement method and classification techniques.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • N. T. Cherpak, A. A. Barannik, Y. V. Prokopenko, T. A. Smirnova, and Y. F. Filipov, “A New Technique of Dielectric Characterization of Liquids,” in Nonlinear Dielectric Phenomena in Complex Liquids, Dordrecht: Kluwer Academic Publishers, 2004, pp. 63–76.
  • T. Ozturk, “Characterization of Liquids Using Electrical Properties in Microwave and Millimeter Wave Frequency Bands,” J. Nondestruct. Eval., vol. 38, no. 1, p. 11, Mar. 2019.
  • B. Lucic et al., “Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods,” Arkivoc, vol. 2002, no. 4, p. 45, Jul. 2002.
  • S. Kim, J. Kwak, and B. Ko, “Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color,” J. Broadcast Eng., vol. 21, no. 3, pp. 425–435, May 2016.
  • T. Ghorbanpour, A. Ghanadzadeh Gilani, and S. Fallahi, “Experimental measurement, excess parameters, and analysis of permittivity data for (primary diols + ketones) binary systems,” J. Mol. Liq., vol. 260, pp. 403–414, Jun. 2018.
  • T. Ozturk, A. Elhawil, İ. Uluer, and M. T. Guneser, “Development of extraction techniques for dielectric constant from freespace measured S-parameters between 50 and 170 GHz,” J. Mater. Sci. Mater. Electron., vol. 28, no. 15, pp. 11543–11549, Aug. 2017.
  • T. Ozturk, M. Hudlička, and İ. Uluer, “Development of Measurement and Extraction Technique of Complex Permittivity Using Transmission Parameter S21 for Millimeter Wave Frequencies,” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 12, pp. 1510–1520, Dec. 2017.
  • I. Matiss, “Multi-element capacitive sensor for non-destructive measurement of the dielectric permittivity and thickness of dielectric plates and shells,” NDT E Int., vol. 66, pp. 99–105, Sep. 2014.
  • M. Fares, Y. Fargier, G. Villain, X. Derobert, and S. P. Lopes, “Determining the permittivity profile inside reinforced concrete using capacitive probes,” NDT E Int., vol. 79, pp. 150–161, Apr. 2016.
  • G. Villain, A. Ihamouten, and X. Dérobert, “Determination of concrete water content by coupling electromagnetic methods: Coaxial/cylindrical transition line with capacitive probes,” NDT E Int., vol. 88, no. July 2016, pp. 59–70, Jun. 2017.
  • M.-K. Olkkonen, “Permittivity scanning of asphalt in a transmission configuration across 7–17 GHz employing a phase compensation method,” NDT E Int., vol. 83, pp. 143–151, Oct. 2016.
  • Z. Li, A. Haigh, C. Soutis, A. Gibson, and R. Sloan, “A Simulation-Assisted Nondestructive Approach for Permittivity Measurement Using an Open-Ended Microwave Waveguide,” J. Nondestruct. Eval., vol. 37, no. 3, p. 39, Sep. 2018.
  • Y. Jiang, Y. Ju, and L. Yang, “Nondestructive In-situ Permittivity Measurement of Liquid Within a Bottle Using an Open-Ended Microwave Waveguide,” J. Nondestruct. Eval., vol. 35, no. 1, p. 7, Mar. 2016.
  • A. A. Amooey, “Improved mixing rules for description of the permittivity of mixtures,” J. Mol. Liq., vol. 180, pp. 31–33, Apr. 2013.
  • P. Saponaro, S. Sorensen, A. Kolagunda, and C. Kambhamettu, “Material classification with thermal imagery,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, vol. 07–12–June, pp. 4649–4656.
  • T. Bhattacharjee, J. Wade, and C. Kemp, “Material Recognition from Heat Transfer given Varying Initial Conditions and Short- Duration Contact,” in Robotics: Science and Systems XI, 2015.
  • M. X. Bastidas-Rodríguez, “Fractographic classification in metallic materials by using 3D processing and computer vision techniques,” Rev. Fac. Ing., vol. 25, no. 43, pp. 83–96, 2016.
  • T. Kanungo et al., “An Efficient k -Means Clustering Algorithm : Analysis and Implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881– 892, 2002.
  • T. Ozturk, “Classification of measured unsafe liquids using microwave spectroscopy system by multivariate data analysis techniques,” J. Hazard. Mater., vol. 363, pp. 309–315, Feb. 2019.
  • S. Ozturk, E. Kayabasi, E. Celik, and H. Kurt, “Determination of lapping parameters for silicon wafer using an artificial neural network,” J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 260–270, Jan. 2018.
  • E. Kayabasi, S. Ozturk, E. Celik, and H. Kurt, “Determination of cutting parameters for silicon wafer with a Diamond Wire Saw using an artificial neural network,” Sol. Energy, vol. 149, pp. 285–293, Jun. 2017.
  • G. E. Chatzarakis and T. Education, “Review of Different Ring Resonator Coupling Methods,” in Proceedings of the 9th WSEAS International Conference on Telecommunications and Informatics, 2010, pp. 227–231.
  • M. Fishel, P. Koehn, and E. Rosen, “Comparison of ring resonator relative permittivity measurements to ground penetrating radar data,” May 2014.
  • L. Su, J. Mata-Contreras, P. Velez, and F. Martin, “Estimation of the complex permittivity of liquids by means of complementary split ring resonator (CSRR) loaded transmission lines,” in 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017, pp. 1–3.
  • A. Kulkarni and V. Deshmukh, “Dielectric Properties Measurement Using Ring Resonator,” Int. J. Sci. Res., vol. 4, no. 4, pp. 2361–2364, 2015.
  • M. Ringnér, “What is principal component analysis?,” Nat. Biotechnol., vol. 26, no. 3, pp. 303–304, 2008.
APA ÖZTÜRK T (2019). A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. , 724 - 730. 10.16984/saufenbilder.495640
Chicago ÖZTÜRK TURGUT A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. (2019): 724 - 730. 10.16984/saufenbilder.495640
MLA ÖZTÜRK TURGUT A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. , 2019, ss.724 - 730. 10.16984/saufenbilder.495640
AMA ÖZTÜRK T A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. . 2019; 724 - 730. 10.16984/saufenbilder.495640
Vancouver ÖZTÜRK T A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. . 2019; 724 - 730. 10.16984/saufenbilder.495640
IEEE ÖZTÜRK T "A New Approximation to Classify the Liquids Measured in Microwave Frequency Range." , ss.724 - 730, 2019. 10.16984/saufenbilder.495640
ISNAD ÖZTÜRK, TURGUT. "A New Approximation to Classify the Liquids Measured in Microwave Frequency Range". (2019), 724-730. https://doi.org/10.16984/saufenbilder.495640
APA ÖZTÜRK T (2019). A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(5), 724 - 730. 10.16984/saufenbilder.495640
Chicago ÖZTÜRK TURGUT A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no.5 (2019): 724 - 730. 10.16984/saufenbilder.495640
MLA ÖZTÜRK TURGUT A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.23, no.5, 2019, ss.724 - 730. 10.16984/saufenbilder.495640
AMA ÖZTÜRK T A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 23(5): 724 - 730. 10.16984/saufenbilder.495640
Vancouver ÖZTÜRK T A New Approximation to Classify the Liquids Measured in Microwave Frequency Range. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 23(5): 724 - 730. 10.16984/saufenbilder.495640
IEEE ÖZTÜRK T "A New Approximation to Classify the Liquids Measured in Microwave Frequency Range." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, ss.724 - 730, 2019. 10.16984/saufenbilder.495640
ISNAD ÖZTÜRK, TURGUT. "A New Approximation to Classify the Liquids Measured in Microwave Frequency Range". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/5 (2019), 724-730. https://doi.org/10.16984/saufenbilder.495640