Yıl: 2019 Cilt: 32 Sayı: 2 Sayfa Aralığı: 674 - 684 Metin Dili: İngilizce İndeks Tarihi: 21-02-2020

Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot

Öz:
Quadruped robots have generally complex construction, so designing a stable controller for themis a major struggle task. This paper presents designing and optimization of an effective hybridcontrol by combining LQR and PID controllers. In this study, the tuning of a hybrid LQR-PIDcontroller for foot trajectory control of a quadruped robot during step motion using Grey WolfOptimizer (GWO) algorithm which is an alternative method are comparatively investigated withtwo traditional benchmarking algorithms (PSO and GA). The principal goal of this work is thetuning of the LQR controller parameters (Q and R weight matrices) and the PID controllers gains(kp, ki and kd) using the proposed algorithms. Initially, the designed solid model of the quadrupedrobot is imported into Simulink/SimMechanics which are simulation tools of MATLAB and thenobtained the mathematical model of system which is at State-Space form with Linear AnalysisTools considering the step motion of robot leg in sagittal plane. Later, the hybrid LQR-PIDcontrol system is designed and its parameters are tuned to get optimal values which guaranteebest trajectory tracing in Simulink with the three proposed algorithms. Subsequently, the systemis simulated separately with optimal control parameters which provide from the algorithms. Thesimulation outcomes are indicating that GWO algorithm is more efficiently and quickly withinsimilar torques to tuning the hybrid controller based on LQR&PID than the other conventionalalgorithms.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Raibert, M., Blankespoor, K., Nelson, G. and Playter, R., “Bigdog, the rough-terrain quadruped robot”, 17th World Congress the International Federation of Automatic Control, Seoul, 10822-10825, (2008).
  • Hutter, M., Gehring, C., Lauber, A., Bellicoso, C. D., Tsounis, V., Fankhauser, P., Diethelm, R., Bachmann, S., Bloesch, M., Kolvenbach H., Bjelonic, M., Isler, L. and Meyer, K., “Anymal-toward legged robots for harsh environments”, Advanced Robotics, 31(17): 918-931, (2017).
  • Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., Siegwart, R., “StarlETH: A Compliant Quadrupedal Robot for Fast, Efficient, and Versatile Locomotion”, International Conference on Climbing and Walking Robots, Baltimore, 483-490, (2012).
  • Cho, J., Kim, J. T., Kim, J., Park, S. and Kim, K. I., “Simple Walking Strategies for Hydraulically Driven Quadruped Robot over Uneven Terrain”, Journal of Electrical Engineering & Technology, 11(5): 1921-718, (2016).
  • Semini, C., Barasuol, V., Goldsmith, J., Frigerio, M., Focchi, M., Gao, Y. and Caldwell, D. G. “Design of the Hydraulically-Actuated Torque-Controlled Quadruped Robot HyQ2Max”, IEEE/ASME Transactions on Mechatronics, 22(2): 635-646, (2017).
  • Hutter, M., Gehring, C., Jud D., Lauber A., Bellicoso, C. D., Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann, S., Melzer, A. and Hoepflinger, M., “Anymala highly mobile and dynamic quadrupedal robot”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, 38-44, (2016).
  • Chang, K., Han, X. J., and Yang, Y., “Self-Adaptive PID Control of Hydraulic Quadruped Robot”, Applied Mechanics and Materials, 496, 1407-1412, (2014).
  • Hubacher, S., “Optimization of the Low-Level Torque Controller of the Quadruped Robot HyQ”, MS Thesis, Swiss Federal Institute of Technology (ETH), Zurich, 65-77, (2014).
  • Meng, J., Yibin, L. and Bin, L., “A dynamic balancing approach for a quadruped robot supported by diagonal legs”, International Journal of Advanced Robotic Systems, 12(10): 1-11, (2015).
  • Focchi, M., et al., “Control of a hydraulically-actuated quadruped robot leg”, IEEE International Conference on Robotics and Automation, Anchorage, 4182-4188, (2010).
  • Verma, S. K., Yadav, S. and Nagar, S. K., “Optimization of Fractional Order PID Controller Using Grey Wolf Optimizer”, Journal of Control Automation and Electrical Systems, 28(3): 314-322, (2017).
  • Razmjooy, N., Ramezani, M. and Namadchian, A., “A New LQR Optimal Control for a Single-Link Flexible Joint Robot Manipulator Based on Grey Wolf Optimizer”, Majlesi Journal of Electrical Engineering, 10(3): 53- 60, (2016).
  • Altinoz, O. T., “Multicost PID controller design for active suspension system: scalarization approach”, An International Journal of Optimization and Control: Theories & Applications, 8(2): 183-194, (2018).
  • Al-Mahturi, A. and Wahid, H., “Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System”, Int. J. Electr. Comput. Energ. Electron. Commun. Eng., 11(2): 196-202, (2017).
  • Bharadwaj, C. S., Babu, T. S. and Rajasekar N., Tuning PID Controller for Inverted Pendulum Using Genetic Algorithm, Advances in Systems Control and Automation 1 nd ed, Konkani A., Bera R. and Paul S., Singapore, 395-404, (2018).
  • Nath, K. and Dewan, L., “Optimization of LQR weighting matrices for a rotary inverted pendulum using intelligent optimization techniques”, Conference on Information and Communication Technology, Gwalior, 1-6, (2017).
  • Sen, M. A. and Kalyoncu, M., “Optimal Tuning of PID Controller Using Grey Wolf Optimizer Algorithm for Quadruped Robot”, Balkan Journal of Electrical and Computer Engineering, 6(1): 29- 35, (2018).
  • Mirjalili, S., Mirjalili, S. M. and Lewis, A., “Grey wolf optimizer”, Advances in Engineering Software, 69: 46- 61, (2014).
  • Mirjalili, S., Saremi, S., Mirjalili, S. M., Coelho, L. D. S., “Multi-cost grey wolf optimizer: a novel algorithm for multi-criterion optimization”, Expert Systems with Applications, 47: 106-119, (2016).
  • Mirjalili, S., “How effective is the Grey Wolf optimizer in training multi-layer perceptrons”, Applied Intelligence, 43(1): 150-161, (2015).
  • Shahrzad, S., Mirjalili, S. Z. and Mirjalili, S. M., “Evolutionary population dynamics and grey wolf optimizer,” Neural Computing and Applications, 26(5): 1257-1263, (2015).
  • Song, X., Tang, L., Zhao, S., Zhang, X., Li, L., Huang, J., and Cai, W., “Grey Wolf Optimizer for parameter estimation in surface waves”, Soil Dynamics and Earthquake Engineering, 75: 147-157, (2015).
  • Singh, N. and Singh, S. B., “Hybrid algorithm of particle swarm optimization and Grey Wolf optimizer for improving convergence performance”, Journal of Applied Mathematics, 2017: 1-15, (2017).
  • Sánchez, D., Melin, P. and Castillo, O., “A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition”, Computational Intelligence and Neuroscience, 2017: 1-26, (2017).
  • Li, L., Sun, L., Guo, J., Qi, J., Xu, B. and Li, S., “Modified discrete grey wolf optimizer algorithm for multilevel image thresholding”, Computational Intelligence and Neuroscience, 2017: 1-16, (2017).
  • Liu, H., Hua, G., Yin, H. and Xu, Y., “An Intelligent Grey Wolf Optimizer Algorithm for Distributed Compressed Sensing,” Computational Intelligence and Neuroscience, 2017: 1-10, (2018).
  • Kennedy, J., Encyclopedia of Machine Learning-Particle swarm optimization 1 nd ed., Sammut C. and Webb G.I., Washington, 760- 766, (2011).
  • Zarringhalami, M., Hakimi, S. M. and Javadi, M., “Optimal Regulation of STATCOM Controllers and PSS Parameters Using Hybrid Particle Swarm Optimization”, 14th International Conference on Harmonics and Quality of Power, Bergamo, 1-7, (2010).
  • Panda, S. and Padhy N. P., “Comparison of particle swarm optimization and Genetic Algorithm for FACTS-based controller design”, International journal of Applied Soft Computing, 8(4): 1418-1427, (2008).
  • Ekinci, S., “Application and comparative performance analysis of PSO and ABC algorithms for optimal design of multi-machine power system stabilizers”, Gazi University Journal of Science, 29(2): 323-334, (2016).
  • Rao, S. S., Engineering Optimization: Theory and Practice 4 nd ed., New Jersey, 694-702, (2009).
  • Internet: USA/Massachusetts, MATLAB Global Optimization Toolbox User’s Guide, Online https://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
  • Åström, K. J. and Hägglund, T., PID controllers: Theory, Design, and Tuning 2 nd ed., USA, 59-120, (1995).
  • Zhou, K., Doyle, J. C. and Glover, K., “Robust and optimal control” New Jersey: Prentice hall, 40, (1996).
  • Sen, M. A., Bakırcıoğlu, V. and Kalyoncu, M., “Inverse Kinematic Analysis of a Quadruped Robot”, International Journal of Scientific & Technology Research, 6(9): 285-289, (2017).
  • Kim, H. K., Won, D., Kwon, O., Kim, T. J., Kim, S. S. and Park, S., “Foot trajectory generation of hydraulic quadruped robots on uneven terrain”, 17th World Congress the International Federation of Automatic Control, Seoul, 3021-3026, (2008).
  • Zeng, Y., Li, J., Yang, S. and Ren, E., “A Bio-Inspired Control Strategy for Locomotion of a Quadruped Robot”, Applied Sciences, 8(1): 56, (2018).
APA Şen M, KALYONCU M (2019). Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. , 674 - 684.
Chicago Şen Muhammed Arif,KALYONCU METE Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. (2019): 674 - 684.
MLA Şen Muhammed Arif,KALYONCU METE Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. , 2019, ss.674 - 684.
AMA Şen M,KALYONCU M Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. . 2019; 674 - 684.
Vancouver Şen M,KALYONCU M Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. . 2019; 674 - 684.
IEEE Şen M,KALYONCU M "Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot." , ss.674 - 684, 2019.
ISNAD Şen, Muhammed Arif - KALYONCU, METE. "Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot". (2019), 674-684.
APA Şen M, KALYONCU M (2019). Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. Gazi University Journal of Science, 32(2), 674 - 684.
Chicago Şen Muhammed Arif,KALYONCU METE Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. Gazi University Journal of Science 32, no.2 (2019): 674 - 684.
MLA Şen Muhammed Arif,KALYONCU METE Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. Gazi University Journal of Science, vol.32, no.2, 2019, ss.674 - 684.
AMA Şen M,KALYONCU M Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. Gazi University Journal of Science. 2019; 32(2): 674 - 684.
Vancouver Şen M,KALYONCU M Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot. Gazi University Journal of Science. 2019; 32(2): 674 - 684.
IEEE Şen M,KALYONCU M "Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot." Gazi University Journal of Science, 32, ss.674 - 684, 2019.
ISNAD Şen, Muhammed Arif - KALYONCU, METE. "Grey Wolf Optimizer Based Tuning of a Hybrid LQR-PID Controller for Foot Trajectory Control of a Quadruped Robot". Gazi University Journal of Science 32/2 (2019), 674-684.