Yıl: 2018 Cilt: 5 Sayı: 1 Sayfa Aralığı: 85 - 115 Metin Dili: İngilizce DOI: 10.18596/jotcsa.317771 İndeks Tarihi: 26-02-2020

Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies

Öz:
In this study, cesium adsorption performance of raw vermiculite obtained from Sivas-Yıldızeli region of Turkey was investigated using batch adsorption method. In order to obtain theoptimum adsorption conditions; different adsorbent dosages, contact times, solution pH’s, initialcesium concentrations and temperature ranges were investigated. The concentration of cesiumin solution was determined by ICP-OES. Kinetic studies demonstrated that adsorption processwas in accordance with pseudo-second order kinetic model and equilibrium isotherm modelingstudies showed that the process was compatible with Langmuir, Freundlich and Temkinadsorption isotherm models, indicating that Cs adsorption process had both physical andchemical character. Negative Gibbs energy values obtained from thermodynamic studiesrevealed that the adsorption process was spontaneous and had a high feasibility. Additionally,the negative enthalpy value indicated that process was exothermic, suggesting that the adsorbedCs+ ions decreased with increasing reaction temperatures. Positive entropy value showed thatdisorderliness between solid-liquid phase increased during adsorption. Results clearly indicatethat vermiculite mineral has a promising potential in removing Cs+ ions from aqueous mediawhich leads mineral may also be used in decomposing and efficiently removing radioactivecesium from contaminated waters.
Anahtar Kelime:

Konular: Kimya, Analitik Termodinamik Spektroskopi Kimya, Uygulamalı Kimya, Organik Kimya, Tıbbi Fizikokimya Kimya, İnorganik ve Nükleer
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Suzuki N, Ochi K, Chikuma T. Cesium Adsorption Behavior of Vermiculite and It’s Application to the Column Method. J Ion Exch. 2014;25(4):122–5.
  • Kim J-O, Lee S-M, Jeon C. Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chem Eng Res Des. 2014 Feb;92(2):368–74.
  • Long H, Wu P, Yang L, Huang Z, Zhu N, Hu Z. Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. J Colloid Interface Sci. 2014 Aug;428:295–301.
  • Hadadi N, Kananpanah S, Abolghasemi H. Equilibrium and Thermodynamic Studies of Cesium Adsorption on Natural Vermiculite and Optimization of Operation Conditions. Iran J Chem Chem Eng IJCCE. 2009 Dec 1;28(4):29–36.
  • Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, et al. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater. 2010 Oct;182(1–3):225–31.
  • Igwe JC, Abia AA. A bioseparation process for removing heavy metals from waste water using biosorbents. Afr J Biotechnol [Internet]. 2006 Jan 1 [cited 2017 Jun 18];5(11). Available from: https://www.ajol.info/index.php/ajb/article/view/43005
  • Abdel-Ghani NT, Hefny M, El-Chaghaby GAF. Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Technol. 2007 Dec;4(1):67–73.
  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review. Crit Rev Environ Sci Technol. 2009 Oct 9;39(10):783–842.
  • Kim E-J, Lee C-S, Chang Y-Y, Chang Y-S. Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9628–34.
  • Khan NA, Hasan Z, Jhung SH. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J Hazard Mater. 2013 Jan;244–245:444–56.
  • Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J. 2017 Jan;308:438–62.
  • A. Saleh T, Sarı A, Tuzen M. Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: Equilibrium, thermodynamic and kinetic studies. J Mol Liq. 2016 Jul;219:937–45.
  • Stawinski W, Wegrzyn A, Danko T, Freitas O, Figueiredo S, Chmielarz L. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere. 2017 Apr;173:107–15.
  • Gharin Nashtifan S, Azadmehr A, Maghsoudi A. Comparative and competitive adsorptive removal of Ni2+ and Cu2+ from aqueous solution using iron oxide-vermiculite composite. Appl Clay Sci. 2017 May;140:38–49.
  • Malandrino M, Abollino O, Giacomino A, Aceto M, Mentasti E. Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands. J Colloid Interface Sci. 2006 Jul;299(2):537–46.
  • Sawhney BL. Sorption and Fixation of Microquantities of Cesium by Clay Minerals: Effect of Saturating Cations. Soil Sci Soc Am J. 1964;28(2):183.
  • Sawhney BL. Sorption of Cesium from Dilute Solutions. Soil Sci Soc Am J. 1965;29(1):25.
  • Sawhney BL. Unusual Sorption of Caesium by Vermiculite. Nature. 1966 Aug;211(5051):893–4.
  • Sawhney BL. Selective Sorption and Fixation of Cations by Clay Minerals: A Review. Clays Clay Miner. 1972;20(2):93–100.
  • Sikalidis CA, Misaelides P, Alexiades CA. Caesium selectivity and fixation by vermiculite in the presence of various competing cations. Environ Pollut. 1988;52(1):67–79.
  • Japanese Atomic Energy Agency. Radioactive cesium is adsorbed onto vermiculite and biotite, mechanism of cesium adsorption has been clarified [Internet]. Japanese Atomic Energy Agency Sector of Fukushima Research and Development. 2015 [cited 2015 Jan 26]. Available from: https://fukushima.jaea.go.jp/english/topics/pdf/topics-fukushima058e.pdf
  • Staunton S, Dumat C, Zsolnay A. Possible role of organic matter in radiocaesium adsorption in soils. J Environ Radioact. 2002 Jan;58(2–3):163–73.
  • Faithfull NT, editor. Methods in agricultural chemical analysis: a practical handbook [Internet]. Wallingford: CABI; 2002 [cited 2017 Jun 18]. Available from: http://www.cabi.org/cabebooks/ebook/20023165853
  • Santos SSG, Pereira MBB, Almeida RKS, Souza AG, Fonseca MG, Jaber M. Silylation of leachedvermiculites following reaction with imidazole and copper sorption behavior. J Hazard Mater. 2016 Apr;306:406–18.
  • Dias NC, Steiner PA, Braga MCB. Characterization and Modification of a Clay Mineral Used in Adsorption Tests. J Miner Mater Charact Eng. 2015;03(04):277–88.
  • Karakoç Cevherinin Fiziksel ve Kimyasal Özellikleri : Organik Madencilik [Internet]. [cited 2017 Jun 18]. Available from: http://www.organikmadencilik.com/?p=112
  • Dong Z, Qiu Y, Dai Y, Cao X, Wang L, Wang P, et al. Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group. J Radioanal Nucl Chem. 2016 Sep;309(3):1217–26.
  • Üçgül E. Sivas-Yıldızeli-Karakoç Flogopit Cevherinin Isısal ve Kimyasal Genleşme Özellikleri [Yüksek Mühendislik Tezi]. Hacettepe Üniversitesi; 1997.
  • Addison J. Sivas-Yıldızeli-Karakoç Detaylı Jeolojik Prospeksiyon Çalışması. 2007.
  • Ehsani İ. Bir Vermikülitin Fiziksel, Kimyasal ve Isıl Özellikleri Üzerine Sülfürik Asit Liçinin Etkileri [Yüksek Lisans Tezi]. [Ankara]: Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı; 2015.
  • Yalçın H, Bozkaya Ö, Yeşildağ H. Sivas-Yıldızeli Yöresi Ultramafik Platonik Kayaçlarla İlişkili Flogopit Oluşumlarının Kökeni. Yerbilim Üniversitesi Yerbilim Uygul Ve Araşt Merk Derg [Internet]. 2016 Jun 3 [cited 2017 Jun 18];37(1). Available from: http://dergipark.gov.tr/doi/10.17824/yrb.79284
  • Khandaker S, Kuba T, Kamida S, Uchikawa Y. Adsorption of cesium from aqueous solution by raw and concentrated nitric acid–modified bamboo charcoal. J Environ Chem Eng. 2017 Apr;5(2):1456–64.
  • Yang J, Luo X, Yan T, Lin X. Recovery of cesium from saline lake brine with potassium cobalt hexacyanoferrate-modified chrome-tanned leather scrap adsorbent. Colloids Surf Physicochem Eng Asp. 2018 Jan;537:268–80.
  • Lagergren S. About the Theory of So-Called Adsorption of Soluble Substances. K Sven Vetenskapsakademiens Handl. 1898;24(4):1–39.
  • Ho Y., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999 Jul;34(5):451–65.
  • Zeldowitsch J. Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochem URSS. 1934;1:364–449.
  • Ho Y. Review of second-order models for adsorption systems. J Hazard Mater. 2006 Aug 25;136(3):681–9.
  • Low MJD. Kinetics of Chemisorption of Gases on Solids. Chem Rev. 1960 Jun 1;60(3):267–312.
  • Abdel-Ghani NT, Rawash ESA, El-Chaghaby GA. Equilibrium and kinetic study for the adsorption of pnitrophenol from wastewater using olive cake based activated carbon. Glob J Environ Sci Manag. 2016 Jan 1;2(1):11–8.
  • Nethaji S, Sivasamy A, Mandal AB. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Technol. 2013 Mar;10(2):231–42.
  • Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, et al. Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochimica Acta. 2013 Jan;87:119–25.
  • Sakamoto S, Kawase Y. Adsorption capacities of poly-g-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. J Environ Radioact. 2016 Dec;165:151–8.
  • Ding D, Lei Z, Yang Y, Zhang Z. Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions. Chem Eng J. 2014 Jan;236:17–28.
  • Seaton K, Little I, Tate C, Mohseni R, Roginskaya M, Povazhniy V, et al. Adsorption of cesium on silica gel containing embedded phosphotungstic acid. Microporous Mesoporous Mater. 2017 May;244:55–66.
  • Langmuir I. The Adsorption of gases on plane surfaces of glass, mica and platinium. J Am Chem Soc. 1918 Sep;40(9):1361–403.
  • Freundlich H. Über die Absorption in Lösungen. Z Für Phys Chem. 1906;57:385–470.
  • Dubinin MM. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chem Rev. 1960 Apr 1;60(2):235–41.
  • Temkin M, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physicochim URSS. 1940;12:217–22.
  • Zacaroni LM, Magriotis ZM, Cardoso M das G, Santiago WD, Mendon?a JG, Vieira SS, et al. Natural clay and commercial activated charcoal: Properties and application for the removal of copper from cacha?a. Food Control. 2015 Jan;47:536–44.
  • Bentahar Y, Hurel C, Draoui K, Khairoun S, Marmier N. Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl Clay Sci. 2016 Jan;119:385–92.
  • Khan TA, Singh VV. Removal of cadmium(II), lead(II), and chromium(VI) ions from aqueous solution using clay. Toxicol Environ Chem. 2010 Sep;92(8):1435–46.
  • Priyantha N, Bandaranayaka A. Interaction of Cr(VI) species with thermally treated brick clay. Environ Sci Pollut Res. 2011 Jan;18(1):75–81.
  • Alemayehu D, Singh S, Tessema D. Assessment of the adsorption capacities of fired clay soils from Jimma (Ethiopia) for the removal of Cr (VI) from aqueous solution. Univ J Env Res Technol. 2012;2:411– 20.
  • McKay G, Blair HS, Gardner JR. Adsorption of dyes on chitin. I. Equilibrium studies. J Appl Polym Sci. 1982 Aug;27(8):3043–57.
  • Meroufel B, Benali O, Benyahya M, Benmoussa Y, Zenasni M. Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. J Mater Env Sci. 2013;4(3).
  • Vijayakumar G, Tamilarasan R, Dharmendirakumar M. Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J Mater Env Sci. 3(1):157–70.
  • Wibowo E, Rokhmat M, Sutisna, Khairurrijal, Abdullah M. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination. 2017 May;409:146–56.
  • Kyziol-Komosinska J, Rosik-Dulewska C, Franus M, Antoszczyszyn-Szpicka P, Czupiol J, Krzyzewska I. Sorption Capacities of Natural and Synthetic Zeolites for Cu(II) Ions. Pol J Environ Stud. 2015;24:1111– 23.
  • Can N, Ömür BC, Altındal A. Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sens Actuators B Chem. 2016 Dec;237:953–61.
  • Hasany SM, Chaudhary MH. Sorption potential of Haro river sand for the removal of antimony from acidic aqueous solution. Appl Radiat Isot. 1996 Apr;47(4):467–71.
  • Ibrahim MB, Sani S. Comparative Isotherms Studies on Adsorptive Removal of Congo Red from Wastewater by Watermelon Rinds and Neem-Tree Leaves. Open J Phys Chem. 2014;04(04):139–46.
  • Lian L, Guo L, Guo C. Adsorption of Congo red from aqueous solutions onto Ca-bentonite. J Hazard Mater. 2009 Jan;161(1):126–31.
  • Zheng X, Dou J, Yuan J, Qin W, Hong X, Ding A. Removal of Cs + from water and soil by ammoniumpillared montmorillonite/Fe3O4 composite. J Environ Sci. 2017 Jun;56:12–24.
  • Abdel-Karim A-AM, Zaki AA, Elwan W, El-Naggar MR, Gouda MM. Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl Clay Sci. 2016 Nov;132–133:391–401.
  • Lee K-Y, Park M, Kim J, Oh M, Lee E-H, Kim K-W, et al. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution. Chemosphere. 2016 May;150:765–71.
  • Lupa L, Voda R, Popa A. Adsorption behavior of cesium and strontium onto chitosan impregnated with ionic liquid. Sep Sci Technol. 2017 Apr 10;1–9.
  • Hamed MM, Aly MI, Nayl AA. Kinetics and thermodynamics studies of cobalt, strontium and caesium sorption on marble from aqueous solution. Chem Ecol. 2016 Jan 2;32(1):68–87.
  • Metwally SS, Ahmed IM, Rizk HE. Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J Alloys Compd. 2017 Jun;709:438–44.
  • Talling JF. Potassium — A Non-Limiting Nutrient in Fresh Waters? Freshw Rev. 2010 Dec;3(2):97–104.
  • Onodera M, Kirishima A, Nagao S, Takamiya K, Ohtsuki T, Akiyama D, et al. Desorption of radioactive cesium by seawater from the suspended particles in river water. Chemosphere. 2017 Oct;185:806–15.
APA AKALIN H, HİÇSÖNMEZ Ü, YILMAZ H (2018). Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. , 85 - 115. 10.18596/jotcsa.317771
Chicago AKALIN Hilmi Arkut,HİÇSÖNMEZ Ümran,YILMAZ HATICE Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. (2018): 85 - 115. 10.18596/jotcsa.317771
MLA AKALIN Hilmi Arkut,HİÇSÖNMEZ Ümran,YILMAZ HATICE Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. , 2018, ss.85 - 115. 10.18596/jotcsa.317771
AMA AKALIN H,HİÇSÖNMEZ Ü,YILMAZ H Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. . 2018; 85 - 115. 10.18596/jotcsa.317771
Vancouver AKALIN H,HİÇSÖNMEZ Ü,YILMAZ H Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. . 2018; 85 - 115. 10.18596/jotcsa.317771
IEEE AKALIN H,HİÇSÖNMEZ Ü,YILMAZ H "Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies." , ss.85 - 115, 2018. 10.18596/jotcsa.317771
ISNAD AKALIN, Hilmi Arkut vd. "Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies". (2018), 85-115. https://doi.org/10.18596/jotcsa.317771
APA AKALIN H, HİÇSÖNMEZ Ü, YILMAZ H (2018). Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry, 5(1), 85 - 115. 10.18596/jotcsa.317771
Chicago AKALIN Hilmi Arkut,HİÇSÖNMEZ Ümran,YILMAZ HATICE Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry 5, no.1 (2018): 85 - 115. 10.18596/jotcsa.317771
MLA AKALIN Hilmi Arkut,HİÇSÖNMEZ Ümran,YILMAZ HATICE Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.5, no.1, 2018, ss.85 - 115. 10.18596/jotcsa.317771
AMA AKALIN H,HİÇSÖNMEZ Ü,YILMAZ H Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry. 2018; 5(1): 85 - 115. 10.18596/jotcsa.317771
Vancouver AKALIN H,HİÇSÖNMEZ Ü,YILMAZ H Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry. 2018; 5(1): 85 - 115. 10.18596/jotcsa.317771
IEEE AKALIN H,HİÇSÖNMEZ Ü,YILMAZ H "Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies." Journal of the Turkish Chemical Society, Section A: Chemistry, 5, ss.85 - 115, 2018. 10.18596/jotcsa.317771
ISNAD AKALIN, Hilmi Arkut vd. "Removal of Cesium from Aqueous Solution by Adsorption onto Sivas- Yildizeli (Türkiye) Vermiculite: Equilibrium, Kinetic and Thermodynamic Studies". Journal of the Turkish Chemical Society, Section A: Chemistry 5/1 (2018), 85-115. https://doi.org/10.18596/jotcsa.317771