Yıl: 2018 Cilt: 5 Sayı: 2 Sayfa Aralığı: 656 - 670 Metin Dili: Türkçe İndeks Tarihi: 06-03-2020

Et Teknolojisinde Alternatif Isıtma Yöntemleri

Öz:
Et, kimyasal bileşimi nedeniyle hızla bozulabilen bir gıdadır. Bu nedenle etin muhafazası için çeşitliyöntemler kullanılmaktadır. Haşlama, kavurma gibi geleneksel ısıtma yöntemleri, gıdaların raf ömrününuzatılmasını ve mikrobiyal açıdan gıda güvenliğini sağlamaktadır. Ancak et ve et ürünlerinin besin değerinde veduyusal niteliklerinde kayıplar meydana gelmektedir. Bunun yanı sıra geleneksel ısıtma yöntemlerinde işlemsüresinin uzun olması nedeniyle enerji kullanımı fazla olmaktadır. Gıdaların geleneksel yöntemlerle pişirilmesisonucunda fiziksel ve kimyasal yapılarında gerçekleşen değişimlerin sebep olduğu renk, tekstür gibiözelliklerindeki değişimler, ürün kalitesinde belirleyici rol oynamaktadır. Bu işlemler sırasında gıda kalitesininbozulması tüketici kabulünde endişe kaynağıdır. Tüketici memnuniyetini sağlamak amacıyla bilim insanları dahagüvenli ve besleyici gıda ürünleri üretmek için çeşitli gıda işleme teknolojilerini araştırmaktadır. Bu teknolojilerarasında son yıllarda ortaya çıkan alternatif ısıtma yöntemleri olarak kullanılan ohmik ısıtma, mikrodalga ısıtma,radyo frekans ısıtma ve infrared ısıtma dikkat çekmektedir. Bunun nedeni, geleneksel yöntemlere kıyaslaalternatif yöntemler, gıda güvenliği açısından yarar sağlarken, işlem sürelerini azaltarak enerji tüketimininkorunmasını sağlamaktadır. Ayrıca bu teknikler et endüstrisinde gıdaların besin öğeleri içeriği ile fonksiyonel veduyusal özelliklerinin korunmasını da sağlamaktadır. Gelecekte, geliştirilen alternatif ısıtma tekniklerinin,günümüzde kullanılan geleneksel ısıtma yöntemlerin yerini alacağı düşünülmektedir.
Anahtar Kelime:

Konular: Gıda Bilimi ve Teknolojisi

Alternative Heating Methods Used in Meat Technology

Öz:
Meat is a food that can quickly deteriorate due to its chemical composition. For this reason, various methods are applied to protect the meat. Although conventional heating methods such as boiling and frying, provide shelf life of food and microbial food safety. However it causes sensory loss and nutritional value losses. Also, excessive use of energy due to long duration of heating process. Changes such as color, texture (structure) properties in the physical and chemical structure of food as a result of cooking, play a decisive role in the quality of the cooking. The deterioration of food quality during these processes is a major concern for consumers. To ensure consumer satisfaction, scientists have explored a variety of food processing technologies to produce safer and nutritious food products. Among these technologies, ohmic heating, microwave heating, radio frequency heating and infrared heating as alternate heating methods which have emerged in the past years have attracted much attention. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. In addition, these techniques allow the nutritional content of foods and the functional and sensory properties of the food to be preserved in the meat industry. Alternative heating techniques developed in the future are expected to take the place of traditional methods used today.
Anahtar Kelime:

Konular: Gıda Bilimi ve Teknolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Aymerich, T., Picouet, P.A., Monfort, J.M., “Decontamination technologies for meat products”, Meat Science, 2008, 78:114–129s.
  • [2] Shah, M.A., Don Bosco, S.J., Mir, S.A. “Plant extracts as natural antioxidants in meat and meat products”, Meat Science, 2014, 98:21–33.
  • [3] Demirdöven, A., Baysal, T., “Meyve ve Sebze İşleme Sanayinde Yeni Uygulamalar”, Türkiye 10. Gıda Kongresi, Erzurum, 207-210, (2008).
  • [4] Do, T-T-H., Schnitzer, H., Le, T-H., “A decision support framework considering sustainability for the selection of thermal food processes”, Journal of Cleaner Production, 2014, 78:112- 120.
  • [5] Zell, M., Lyng, G.J., Cronin, A.D., Morgan, J.D., “Ohmic cooking of whole beef muscle- Optimisation of meat preparation”, Meat Science, 2009, 81:693–698s.
  • [6] İçier, F., “Ohmic Heating of Fluid Foods”, Novel Thermal and Non-Thermal Technologies for Fluid Foods, Academic Press, USA, (2012).
  • [7] Yildiz-Turp, G., Yücel-Şengün, I., Kendirci, P., Icier, F., “Effect of ohmic treatment on quality characteristic of meat: A review”, Meat Science, 2013, 93:441–448.
  • [8] Pereira, R.N., Vicente, A.A., “Environmental impact of novel thermal and non-thermal Technologies in food processing”, Food Research International, 2010, 43:1936–1943.
  • [9] Wang, L., “Energy efficiency technologies for sustainable food processing”, Energy Efficiency, 2014, 7:791-810.
  • [10] Knirsch, M.C., Santos, C.A., Vicente, A.A.M.O.S., Penna, T.C.V., “Ohmic heating -a review”, Trends in Food Science & Technology, 2010, 21:436-441.
  • [11] Fellows P.J., “Introduction”, Food Processing Technology Principles and Practice, CRC Press, New York, (2009).
  • [12] Misra, N.N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R.S., Saraiva, J.A., Barba, F.J., “Landmarks in the historical development of twenty first century food processing Technologies”, Food Research International, 2017, 97:318–339.
  • [13] Domínguez, R., Borrajo, P., Lorenzo, J.M., “The effect of cooking methods on nutritional value of foal meat”, Meat Science, 2015, 43:61-67.
  • [14] Pathare, P.B., Roskilly, A.P., “Quality and Energy Evaluation in Meat Cooking”, Food Eng Rev, 2016, 8:435–447.
  • [15] Lorenzo, J.M., Cittadini, A., Munekata, P.E., Domínguez, R., “Physicochemical properties of foal meat as affected by cooking methods”, Meat Science, 2015, 108:50–54.
  • [16] Türk Gıda Kodeksi, (2012) Türk Gıda Kodeksi Et Ve Et Ürünleri Tebliği, Tebliğ No: 2012/74 http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=9.5.16821&MevzuatIliski=0&sourceX mlSearch=et Son Erişim Tarihi: 26.02.2018
  • [17] Bakalis, S., Cox, P.W., Fryer, P.J., “Modelling particular thermal Technologies”, Thermal technologies in food processing, CRC Press, New York, (2001).
  • [18] Sanguansri, P., “Traditional Thermal Processing”, Reference Module in Food Sciences, 1-3. (2016).
  • [19] Lopes, A.F., Alfaia, C.M.M., Partidário, A.M.C.P.C., Lemos, J.P.C., Prates, J.A.M., “Influence of household cooking methods on amino acids andminerals of Barrosã-PDO veal”, Meat Science, 2015, 99:38–43.
  • [20] Lee, S.H., Choi, W., Jun, S., “Conventional and Emerging Combination Technologies for Food Processing”, Food Eng Rev, 2016, 8:414–434.
  • [21] Ling, B., Tang, J., Kong, F., Mitcham E.J., Wang, S., “Kinetics of Food Quality Changes During Thermal Processing: a Review”, Food Bioprocess Technol, 2015, 8:343–358.
  • [22] Soladoye, O.P., Shand, P., Dugan, M.E.R., Gariépy, C., Aalhus, J.L., Estévez, M., Juárez, M., “Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon”, Food Research International, 2017, 99:660-669.
  • [23] Calabrò, E., Magazù, S., “Non-Thermal Effects of Microwave Oven Heating on Ground Beef Meat Studied in the Mid- Infrared Region by Fourier Transform Infrared Spectroscopy”, An International Journal for Rapid Communication, 2015, 649-656.
  • [24] Scussat, S., Vaulot, C., Ott, F., Cayot, P., Delmotte, L., Loupiac, C., “The impact of cooking on meat microstructure studied by low field NMR and Neutron Tomography”, Food Structure, 2017, 14:36-45.
  • [25] Kondjoyan, A., Kohler, A., Realini, C.E., Portanguen, S., Kowalski, R., Clerjon, S., Gatellier, P., Chevolleau, S., Bonny, J-M., Debrauwer, L., “Towards models for the prediction of beef meat quality during cooking”, Meat Science, 2014, 97:323–331.
  • [26] Domínguez, R., Gómez, M., Fonseca, S., Lorenzo, J.M., “Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat”, Meat Science, 2014, 97:223–230.
  • [27] Candan, T., Aytunga Bağdatlı, A., “Use of natural antioxidants in poultry meat”, CBÜ Fen Bil. Dergi., 2017, 13 (2):279-291.
  • [28] Kılıç, B., Şimşek¸ A., Claus, J.R., Atılgan, E., “Melting release point of encapsulated phosphates and heating rate effects on control of lipid oxidation in cooked ground meat”, LWT - Food Science and Technology, 2016, 66:398-405.
  • [29] Öz, F., Kızıl, M., Zaman, A., Turhan, S., “The effects of direct addition of low and medium molecular weight chitosan on the formation of heterocyclic aromatic amines in beef chop”, LWT- Food Science and Technology, 2016, 65:861-867.
  • [30] Szterk, A., “Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAA content”, Journal of Food Composition and Analysis, 2015, 40:39-46.
  • [31] Jiménez-Sánchez, C., Lozano-Sánchez, J., Segura-Carretero, A., Fernández-Gutiérrez, A., “Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications”, Critical Reviews In Food Science And Nutrition, 2017, 57 (3):501-523.
  • [32] Cokgezme, O.F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F., “Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system”, Journal of Food Engineering, 2017, 207:1-9.
  • [33] Sarang, S., Sastry, S.K., ve Knipe, L., “Electrical conductivity of fruits and meats during ohmic heating”, Journal of Food Engineering, 2008, 87:351–356s.
  • [34] Zhu, S.M., Zareifard, M.R., Chen, C.R., Marcotte, M., Grabowski, S., “Electrical conductivity of particle–fluid mixtures in ohmic heating: Measurement and simulation”, Food Research International, 2010, 43:1666–1672.
  • [35] Sarkis, J.R., Mercali, G.D., Tessaro, I.C., Marczak, L.D.F., “Evaluation of key parameters during construction and operation of an ohmic heating apparatus” Innovative Food Science and Emerging Technologies, 2013, 18:145–154.
  • [36] Sman, R.G.M., “Model for electrical conductivity of muscle meat during Ohmic heating”, Journal of Food Engineering, 2017, 208:37-47.
  • [37] Dai, Y., Miao, J., Yuan, S-Z., Liu, Y., Li, X-M., Dai, R-T., “Colour and sarcoplasmic protein evaluation of pork following water bath and ohmic cooking”, Meat Science, 2013 93:898-905.
  • [38] Bozkurt, H., İçier, F., “Ohmic cooking of ground beef: Effects on quality”, Journal of Food Engineering, 2010, 96:481–490.
  • [39] Engchuan, W., Jittanit, W., Garnjanagoonchorn, W., “The ohmic heating of meat ball: Modeling and quality determination”, Innovative Food Science and Emerging Technologies, 2014, 23:121–130.
  • [40] Zell, M., Lyng, J.G., Morgan, D.J., Cronin, D.A., “Quality evaluation of an ohmically cooked ham product”, Food Bioprocess Technol, 2012, 5:265–272.
  • [41] Yildiz-Turp, G., “Effects of four different cooking methods on some quality characteristics of low fat Inegol meatball enriched with flaxseed flour”, Meat Science, 2016, 121:40-46.
  • [42] İçier, F., Yücel-Şengün, İ., Yildiz-Turp, G., Arserim, E.H., “Effects of process variables on some quality properties of meatballs semi-cooked in a continuous type ohmic cooking system”, Meat Science, 2014, 96:1345–1354.
  • [43] Yücel-Şengün, İ., Yildiz-Turp, G., İçier, F., Kendirci, P., Kor, G., “Effects of ohmic heating for pre-cooking of meatballs on some quality and safety attributes”, LWT- Food Science and Technology, 2014, 55:232-239.
  • [44] Wang, R., Farid, M.M., “Corrosion and health aspects in ohmic cooking of beef meat patties”, Journal of Food Engineering, 2015, 146:17–22.
  • [45] Balpetek, D., Gürbüz, Ü., “Application of Ohmic Heating System in Meat Thawing”, Procedia - Social and Behavioral Sciences, 2015, 195:2822–2828.
  • [46] İçier, F., Turgay-Izzetoglu, G., Bozkurt, H., ve Ober, A., “Effects of ohmic thawing on histological and textural properties of beef cuts”, Journal of Food Engineering, 2010, 99:360– 365.
  • [47] Kaur, N., Singh, A.K., “Ohmic Heating: Concept and Applications-A Review”, Critical Reviews in Food Science and Nutrition, 2016, 2338-2351.
  • [48] Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K-H., Knorr, D., Vogel, R.F., Bandick, N., Kulling, S., Heinz, V., Steinberg, P., “Opinion on the use of ohmic heating for the treatment of foods”, Trends in Food Science & Technology, 2016, 55:84-97.
  • [49] Bozkır, H., Baysal, T., Ergün, A.R., “Gıda Endüstrisinde Uygulanan Yeni Çözündürme Teknikleri”, Akademik Gıda, 2014, 12 (3):38-44.
  • [50] Guo, Q., Sun, D-W., Cheng, J-H., Han, Z., “Microwave processing techniques and their recent applications in the food industry”, Trends in Food Science & Technology, 2017, 67:236-247.
  • [51] Santos, T., Valente, M.A., Monteiro, J., Sousa, J., Costa, L.C., “Electromagnetic and thermal history during microwave heating”, Applied Thermal Engineering, 2011, 31:3255-3261.
  • [52] Ekezie, F-G.C., Sun, D-W., Han, Z., Cheng, J-H., “Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments”, Trends in Food Science & Technology, 2017, 67:58-69.
  • [53] Anwar, J., Shafique, U., Waheed-uz-Zaman, Rehman, R., Salman, M., Dar, A., Anzano, J.M., Ashraf, U., Ashraf, S., “Microwave chemistry: Effect of ions on dielectric heating in microwave ovens”, Arabian Journal of Chemistry, 2015, 8:100-104.
  • [54] Song, W-J., Kang, D-H., “Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in peanut butter by microwave heating”, Food Microbiology, 2016, 60:104-111.
  • [55] Barbosa-Cánovas, G.V., Ilce Medina-Meza, İ., Candoğan, K., Bermúdez-Aguirre, D., “Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products”, Meat Science, 2014, 98:420–434.
  • [56] İbicek, T., “Alternatif Pişirme Yöntemlerinin Araştırılması ve Yeni Hibrid Yöntem Oluşturulması”, (Yüksek Lisans Tezi), İstanbul Üniversitesi ve Fen Bilimleri Enstitüsü, (2006).
  • [57] Konak, Ü.İ., Certel, M., Helhel, S., “Gıda Sanayisinde Mikrodalga Uygulamaları”, Gıda Teknolojileri Elektronik Dergisi, 2009, 4 (3):20-31.
  • [58] Yarmand, M.S., Homayouni, A., Nikmaram, P., Djomeh, Z.E., “Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating”, Meat Science, 2013, 95:419–424.
  • [59] Półtorak, A., Wyrwisz, J., Moczkowska, M., Marcinkowska-Lesiak, M., Stelmasiak, A., Rafalska, U., Wierzbicka, A., Sun, D-W., “Microwave vs. convection heating of bovine Gluteus Medius muscle: impact on selected physical properties of final product and cooking yield”, International Journal of Food Science and Technology, 2015, 50:958–965.
  • [60] Jouquand, C., Tessier, F.J., Bernard, J., Marier, D., Woodward, K., Jacolot, P., Gadonna- Widehem, P., Laguerre, J-C., “Optimization of microwave cooking of beef burgundy in terms of nutritional and organoleptic properties”, LWT- Food Science and Technology, 2015, 60:271-276.
  • [61] Peiretti, P.G., Medana, C., Visentin, S., Dal-Bello, F., Meineri, G., “Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat”, Food Chemistry, 2012, 132:80–85.
  • [62] Chang, H.J., Xu, X.L., Li, C.B., Huang, M., Liu, D.Y., Zhou, G.H., “A Comparison of Heat- Induced Changes of Intramuscular Connective Tissue and Collagen of Beef Semitendinosus Muscle During Water Bath And Microwave Heating”, Journal of Food Process Engineering, 2011, 34:2233–2250.
  • [63] Rowley, A.T., EA Technology Ltd., Chester., “Radio frequency heating” Thermal technologies in food processing, CRC Press, New York, (2001).
  • [64] Ferrari-John, R.S., Katrib, J., Palade, P., Batchelor, A.R., Dodds, C., Kingman, S.W., “A Tool for Predicting Heating Uniformity in Industrial Radio Frequency Processing”, Food Bioprocess Technol, 2016, 9:1865–1873.
  • [65] Jiao, Y., Shi, H., Tang, J., Li, F., Wang, S., “Improvement of radio frequency (RF) heating uniformity on low moisture foods with Polyetherimide (PEI) blocks”, Food Research International, 2015, 74:106-114.
  • [66] Zhang, L., Lyng, G.J., Brunton, P.N., “The effect of fat, water and salt on the thermal and dielectric properties of meat batter and its temperature following microwave or radio frequency heating”, Journal of Food Engineering, 2007, 80:142–151.
  • [67] Uyar, R., Erdogdu, F., Sarghinic, F., Marra, F., “Computer simulation of radio-frequency heatingapplied to block-shaped foods: Analysis on the roleof geometrical parameters”, Food and Bioproducts Processing, 2016, 98:310-319.
  • [68] Schlisselberg, D.B., Kler, E., Kalily, E., Kisluk, G., Karniel, O., Yaron, S., “Inactivation of foodborne pathogens in ground beef by cooking with highly controlled radio frequency energy”, International Journal of Food Microbiology, 2013, 160:219–226s.
  • [69] Zhang, S., Huang, Z., Wang, S., “Improvement of radio frequency (RF) heating uniformity for peanuts with a new strategy using computational modeling”, Innovative Food Science and Emerging Technologies, 2017, 41:79-89.
  • [70] Rincon, A.M., Singh, R.K., Stelzleni, A.M., “Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a Radio Frequency oven”, LWT- Food Science and Technology, 2015, 64:1323-1328.
  • [71] Uyar, R., Erdogdu, F., Marra, F., “Effect of load volume on power absorption and temperature evolution during radio-frequency heating of meat cubes: A computational study”, Food and Bioproducts Processing, 2014, 92:243–251.
  • [72] Nagaraj, G., Singh, R., Hung, Y.C., Mohan, A., “Effect of radio-frequency on heating characteristics of beef homogenate blends, LWT- Food Science and Technology, 2015, 60:372-376.
  • [73] Rincon, A.M., Singh, R.K., “Inactivation of Shiga toxin-producing and nonpathogenic Escherichia coli in non-intact steaks cooked in a radio frequency oven”, Food Control, 2016, 62:390-396.
  • [74] Laycock, L., Piyasena, P., Mittal, G.S., “Radio frequency cooking of ground, comminuted and muscle meat products”, Meat Science, 2003, 65:959–965.
  • [75] Troy, D.J., Ojha, K.S., Kerry, J.P., Tiwari, B.K., “Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview”, Meat Science, 2016, 120:2–9.
  • [76] Fellows P.J. “Dielectric, ohmic and infrared heating”, Food Processing Technology Principles and Practice, CRC Press, New York, (2009).
  • [77] Skjoldebrand, C., ABB Automation Systems., “Infrared heating”, Thermal technologies in food processing, CRC Press, New York, (2001).
  • [78] Wang, B., Venkitasamy, C., Zhang, F., Zhao, L., Khir, R., Pan, Z., “Feasibility of jujube peeling using novel infrared radiation heating technology”, LWT- Food Science and Technology, 2016, 69:458-467.
  • [79] Kendirci, P., Icier, F., Kor, G., Altug-Onogur, T., “Influence of infrared final cooking on polycyclic aromatic hydrocarbon formation in ohmically pre-cooked beef meatballs”, Meat Science, 2014, 97:123–129.
  • [80] Yücel-Sengun, I., Icier, F., Kor, G., “Effects Of Combined Ohmic–Infrared Cooking Treatment on Microbiological Inactivation of Meatballs”, Journal of Food Process Engineering, 2015, 40:1745-4530.
  • [81] Yildiz Turp, G., Filiz Icier, F., Kor, G., “Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball”, Meat Science, 2016, 114:46– 53.
APA CANDAN T, BAĞDATLI A (2018). Et Teknolojisinde Alternatif Isıtma Yöntemleri. , 656 - 670.
Chicago CANDAN Tuba,BAĞDATLI Aytunga Et Teknolojisinde Alternatif Isıtma Yöntemleri. (2018): 656 - 670.
MLA CANDAN Tuba,BAĞDATLI Aytunga Et Teknolojisinde Alternatif Isıtma Yöntemleri. , 2018, ss.656 - 670.
AMA CANDAN T,BAĞDATLI A Et Teknolojisinde Alternatif Isıtma Yöntemleri. . 2018; 656 - 670.
Vancouver CANDAN T,BAĞDATLI A Et Teknolojisinde Alternatif Isıtma Yöntemleri. . 2018; 656 - 670.
IEEE CANDAN T,BAĞDATLI A "Et Teknolojisinde Alternatif Isıtma Yöntemleri." , ss.656 - 670, 2018.
ISNAD CANDAN, Tuba - BAĞDATLI, Aytunga. "Et Teknolojisinde Alternatif Isıtma Yöntemleri". (2018), 656-670.
APA CANDAN T, BAĞDATLI A (2018). Et Teknolojisinde Alternatif Isıtma Yöntemleri. El-Cezerî Journal of Science and Engineering, 5(2), 656 - 670.
Chicago CANDAN Tuba,BAĞDATLI Aytunga Et Teknolojisinde Alternatif Isıtma Yöntemleri. El-Cezerî Journal of Science and Engineering 5, no.2 (2018): 656 - 670.
MLA CANDAN Tuba,BAĞDATLI Aytunga Et Teknolojisinde Alternatif Isıtma Yöntemleri. El-Cezerî Journal of Science and Engineering, vol.5, no.2, 2018, ss.656 - 670.
AMA CANDAN T,BAĞDATLI A Et Teknolojisinde Alternatif Isıtma Yöntemleri. El-Cezerî Journal of Science and Engineering. 2018; 5(2): 656 - 670.
Vancouver CANDAN T,BAĞDATLI A Et Teknolojisinde Alternatif Isıtma Yöntemleri. El-Cezerî Journal of Science and Engineering. 2018; 5(2): 656 - 670.
IEEE CANDAN T,BAĞDATLI A "Et Teknolojisinde Alternatif Isıtma Yöntemleri." El-Cezerî Journal of Science and Engineering, 5, ss.656 - 670, 2018.
ISNAD CANDAN, Tuba - BAĞDATLI, Aytunga. "Et Teknolojisinde Alternatif Isıtma Yöntemleri". El-Cezerî Journal of Science and Engineering 5/2 (2018), 656-670.