Yıl: 2018 Cilt: 6 Sayı: 7 Sayfa Aralığı: 924 - 929 Metin Dili: İngilizce DOI: https://doi.org/10.24925/turjaf.v6i7.923-929.1899 İndeks Tarihi: 14-02-2020

Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories

Öz:
In this study, resistance mechanism of two wheat genotypes against salt, heavy metal,lime and drought (50%) treatments were investigated in summer Cumhuriyet-75 andwinter Selimiye-95. According to results chlorophyll a, b, total chlorophyll andcarotenoid level increased in FeCl3, drought and 225 mM NaCl in Cumhuriyet-75 butthey were higher at NaCl, FeCl3 and ZnCl2 treatments in Selimiye-95 comparison tocontrol. While H2O2 content rose all stres treatments in both varieties butMalondialdehyde (MDA) decreased in Selimiye with all applications. The amount ofproline is lower in Cumhuiyet-75 but higher in Selimiye-95. Total soluble protein wasfound higher at salt concentartion and drought in both varieties. Ascorbate peroxidase(APX), Süperoxide dismutase (SOD) activity increased in salt and FeCl3 in Selimiye-95but SOD ativity were higher at salt treatments in Cumhuriyet-75. And also in bothvarieties APX and Guaiacol peroxidase (GuPX) increased at FeCl3 but Catalase (CAT)were higher in only FeCl3 in Cumhuriyet-75. As a result Selimiye-95 showed tolerance tosalt and FeCl3 with high photosynthetic pigment, proline and soluble protein content withlower MDA but it is sensitive to NiCl2 and drought. Whereas Cumhuriyet-75 cultivar isresistan to drought, FeCl3 and 225 mM NaCl depended on pigment, protein content andAPX, CAT, GuPX and SOD activities. When all the data are taken into consideration, itwas concluded that the responses of the varieties to the treatments changed according tothe type and concentration of stress, and Selimiye-95 variety was tolerant compared toCumhuriyet-75 variet
Anahtar Kelime:

Konular: Ziraat Mühendisliği Gıda Bilimi ve Teknolojisi

Cumhuriyet-75 ve Selimiye-95 Buğday Çeşitlerinin Bazı Abiyotik StresFaktörlerine Toleranslarının Belirlenmesi

Öz:
Bu çalışmada Cumhuriyet-75 ve Selimiye-95 buğday çeşitlerinin tuz, ağır metal, kireç ve kurak (%50) uygulamalarına toleransları araştırılmıştır. Bulgulara göre Cumhuriyet-75’te klorofil a, klorofil b, toplam klorofil ve karotenoit miktarı FeCl3, kurak ve 225 mM NaCl uygulamalarında kontrole göre artış gösterirken Selimiye-95’te NaCl konsantrasyonları, FeCl3ve ZnCl2uygulamalarında en yüksek değere ulaşmıştır. Hidrojen peroksit miktarı (H2O2) miktarı her iki buğday çeşidinde yüksektir ancak malondialdehit (MDA) miktarı Selimiye-95’te tüm uygulama gruplarında azalmıştır. Prolin içeriği Cumhuriyet’te tüm uygulama gruplarında azalırken Selimiye-95’te artmıştır. Toplam çözünür protein her iki buğday çeşidinde NaCl konsantrasyonları ve kuraklıkuygulamasında yüksek bulunmuştur. Askorbat peroksidaz (APX) ve Süperoksit dismutaz (SOD) aktivitesi Selimiye-95’te NaCl ve FeCl3uygulamasında, Cumhuriyet-75’te ise SOD aktivitesi NaCl uygulamalarında yüksek bulunmuştur. Ayrıca APX ve Guaiakol peroksidaz (GuPX) aktivitesi her iki çeşitte FeCl3uygulamasında artış gösterirken, CAT aktivitesi sadece Cumhuriyet-75’te FeCl3uygulamasında yüksektir. Sonuç olarak Selimiye-95 buğday çeşidi yüksek pigment içeriği, prolin, çözünür protein ve düşük MDA değeri ile NaCl konsantrasyonları ve FeCl3uygulamalarına tolerans gösterirken, NiCl2ve kuraklık uygulamalarına ise duyarlı bulunmuştur. Cumhuriyet-75 çeşidi pigment, protein miktarı ve APX, Katalaz (CAT), GuPX ve SOD aktivite değerlerine bağlı olarak kuraklık, FeCl3ve 225 mM NaCl uygulamalarına dayanıklıdır. Tüm veriler değerlendirildiğine çeşitlerin stres uygulamalarına tepkisi stresin çeşidi ve konsantrasyonuna göre değiştiği ve ayrıca Selimiye-95 çeşidinin Cumhuriyet-75’e göre dayanıklı olduğu sonucuna varılmıştır.
Anahtar Kelime:

Konular: Ziraat Mühendisliği Gıda Bilimi ve Teknolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Arnon D. 1949. Coppere enzymes in isolated chloroplasts: Polyphenoloxydase in Beta vulgaris. Plant Physiol. 24:1-15.
  • Ashraf M, Harris PJC. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3-16.
  • Başer İ, Korkut KZ, Bilgin O. 2005. Ekmeklik buğdayda (Triticum aestivum L.) kurağa dayanıklılıkla ilgili özellikler arasındaki ilişkiler. Tekirdağ Ziraat Fakültesi Dergisi. 2 (3).
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of proline for water-stress studies. Plant and Soil. 39: 205-207.
  • Bergmeyer HU. 1974. Methods of Enzymatic Analysis. New York, Academic Press.
  • Blake NK, Lanning SP, Martin JM, Sherman JD, Talbert LE (2007). Relationship of flag leaf characteristics to economically important traits in two spring wheat crosses. Crop Sci. 47:491-494.
  • Bradford M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 72:248-254.
  • Chance B, Maehly SK. 1995. Assay of catalase and peroxidase”, Methods Enzymol. 2:764-775.
  • Chen CT, Chen LM, Lin CC, Kao CH. 2001. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci. 160: 283-290.
  • Crawford NM. 1995. Nitrate: nutrient and signal for plant growth. The Plant Cell. 7: 859-868.
  • Çakmak I. 1994. Activity of ascorbate-dependent H2O2 scavenging enzymes and leaf chlorosis are enhancedin magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. Journal of Experimental Botany. 45: 1259-1266.
  • Çakmak O, Öztürk L, Karanlık S, Özkan H, Kaya Z, Çakmak İ. 2001. Tolerance of 65 durum wheat genotypes to zinc deficiency in a calcareous soil. J. Plant Nutr. 24: 1831-1847.
  • Çimen B, Yeşiloğlu T, Yılmaz B, İncesu M. 2013. Farklı Tuz Konsantrasyonlarının Bazı Turunçgil Anaçlarının Fotosentetik Performansları Üzerine Etkileri”, Tarım Bilimleri Araştırma Dergisi. 6 (2):13-18.
  • Davies KJA. 1987. Protein damage and degradation by oxygen radicals I. General aspects. J Biochem Chem. 262: 9895- 9901.
  • Demiral T, Türkan I. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Exp Bot. 53: 247-257.
  • Dubey D, Pandey A. 2011. Effect of Nickel (Ni) On Chlorophyll, Lipid Peroxidation and Antioxidant Enzymes Activities In Black Gram (Vigna Mungo) Leaves. I.J.S.N. (2) 2011:395-40.
  • Efeoglu B, Terzioglu S. 2009. Photosynthetic responses of two wheat varieties to high temperature. EurAsia J. BioSci. 3: 97-106.
  • Foyer CH, Shigeoka S. 2011. Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. Plant Physiology. 155 (1): 93-100.
  • Gregersen PL, Holm PB, Krupinska K. 2008. Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biology. 10: 37-49.
  • Gruber B, Kosegarten H. 2002. Depressed growth of nonchlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. J. Plant Nutr. and Soil Sci. 165: 11-117.
  • Gupta NK, Gupta S, Kumar A. 2001. Effect of water stress on physiological attributes and their relationship with growth and yield of wheat cultivars at different stages. Crop Science, 41: 1390-1395.
  • Halliwell B, Gutteridge JMC. 2012. Free Radical in Biology and Medicine, Oxford University Press, UK, 1999, 3rd edn.
  • Hernandez JA, Almansa MS. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea plants. Physiol. Plant. 115(2): 251-257.
  • Kavir Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Sreenivasulu N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Cur Sci. 88: 424-438.
  • Keyvan S. 2010. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal and Plant Sciences. 8(3): 1051-1060.
  • Kholová J, Sairam RK, Meena RC. 2010. Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiologiae Plantarum. 32: 477-486.
  • Kumar V, Awasthi G, Chauhan PK. 2012. Cu and Zn tolerance and responses of the Biochemical and Physiochemical system of Wheat. Journal of Stress Physiology & Biochemistry. 8 (3): 203-213.
  • Lutts S, Kinet, JM, Bouharmont J. 1996. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78:389- 398.
  • Makino A. 2001. Photosynthesis, Grain Yield, and Nitrogen Utilization in Rice and Wheat. Plant Physiology. 155 (1):125-29.
  • Molas J. 2002. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complexes. Environ. Exp. Bot. 47:115-126.
  • Nagaiyot PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. J. Environ Chem Lett. 8 (3): 199-216.
  • Nagoor S. 1999. Physiological and biochemical responses of cereal seedlings to graded levels of heavy metals. II. Effects on protein metabolism in maize seedlings. Adv. Plant Sci. 12: 425-433.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Physiologia Plantarum. 115: 393-400.
  • Neto ADA, Prisco JT, Enéas-Filho J, Abreu CEB, Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany. 56: 87-94.
  • Öncel I, Keleş Y. 2002. Tuz Stresi Altındaki Buğday Genotiplerinde Büyüme, Pigment İçeriği ve Çözünür Madde Kompozisyonunda Değişmeler. C.Ü. Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi. 23(2): 9-16.
  • Öz A, Cegil Bekir. 2016. A study on adaptation of some maize cultivar in Middle Kızılırmak Basin. Journal of Applied Biological Sciences. 10 (1): 01-07.
  • Özturk A, Aydin F. 2004. Effect of water stress at various growth stages on some quality characteristics of winter wheat. J. Agronomy & Crop Science. 190: 9399.
  • Pandey SN, Sing K. 2011. Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J. Environ. Biol. 32: 391-394.
  • Parida AK, Dagaonkar VS, Phalak MS. 2007.Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol. Rep. 1: 37-48.
  • Parida AK, Das AB, Das P. 2002. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol. 45: 28-36.
  • Pattanagul W, Thitisaksakul M. 2008. Effect of Salinity stress on growth and carbohydrate metabolism in tree rice (Oryza sativa) cultivars in differing salinity tolerance. Indian Journal of Experimental Biology. 46: 735-742.
  • Raines CA. 2011. Increasing Photosynthetic Carbon Assimilation in C3 Plants to Improve Crop Yield: Current and Future Strategies. Plant Physiology. 155 (1): 36-42.
  • Razi H, Zahedi MB, Saed-Moucheshi A. 2016. Evaluation of Antioxidant Enzymes, Lipid Peroxidation and Proline Content as Selection Criteria for Grain Yield under Water Deficit Stress in Barley. Journal of Applied Biological Sciences. 10 (1): 71-78.
  • Sairam RK, Srivastava, GC, Agarwal S, Meena RC. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum. 49: 85-91.
  • Santos CV. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae. 103: 93-99.
  • Schmidt W, Fühner C. 1998. Sensitivity to and requirement for iron in Plantago species. The New Phytologist. 138: 639- 651.
  • Sharma S, Vıllamor JG, Versules PE. 2011. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential”, Plant Physiology. 157 (1): 292-304.
  • Sharma SS, Dietz KJ. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany. 57: 711-726.
  • Singh PK, Tewari RK. 2003. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. Plants”, J. Environ. Biology. 24: 107-112.
  • Sofo A, Scopa A, Nuzzaccı M, Vitti A. 2015. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. Int. J. Mol. Sci. 16: 13561-13578.
  • Spiteller G. 2003. The relationship between cell wall, lipid peroxidation, proliferation, senescence and cell death. Physiol. Plant. 119: 5-18.
  • Szabados L, Savoure A. 2009. Proline: a multifunctional amino acid. Trends Plant Sci. 2: 89-97.
  • Terzi H, Yıldız M. 2013. Effect of NaCl Stress on Chlorophyll Biosynthesis, Proline, Lipid Peroxidation and Antioxidative Enzymes in Leaves of Salt-Tolerant and Salt-Sensitive Barley Cultivars. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences. 19 :79-88.
  • Turkyılmaz Unal B, Aktaş LY, Güven A. 2014. Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages. Bulg. J. Agric. Sci. 20: 883-887.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci. 151: 59-66.
  • Waters BM, Uauy C, Dubcovsky J, Grusak MA. 2009. Wheat (Triticum aestivum) proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany. 60(15): 4263- 4274.
  • Witham FH, Blaydes DF, Devli RM. 1971. Experiments in plant physiology. 55-56. Van Nostrand Reinhold Company, New York.
  • Zheng Y, Xu X, Li Z, Yang X, Zhang C, Li F, Jiang G. 2009. Differential responses of grain yield and quality to salinity between contrasting winter wheat cultivars. Seed Sci. Biotech. 3: 40-43
APA turfan n, MUTLU E (2018). Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. , 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
Chicago turfan nezahat,MUTLU Ekrem Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. (2018): 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
MLA turfan nezahat,MUTLU Ekrem Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. , 2018, ss.924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
AMA turfan n,MUTLU E Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. . 2018; 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
Vancouver turfan n,MUTLU E Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. . 2018; 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
IEEE turfan n,MUTLU E "Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories." , ss.924 - 929, 2018. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
ISNAD turfan, nezahat - MUTLU, Ekrem. "Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories". (2018), 924-929. https://doi.org/https://doi.org/10.24925/turjaf.v6i7.923-929.1899
APA turfan n, MUTLU E (2018). Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 6(7), 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
Chicago turfan nezahat,MUTLU Ekrem Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 6, no.7 (2018): 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
MLA turfan nezahat,MUTLU Ekrem Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.6, no.7, 2018, ss.924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
AMA turfan n,MUTLU E Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2018; 6(7): 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
Vancouver turfan n,MUTLU E Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2018; 6(7): 924 - 929. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
IEEE turfan n,MUTLU E "Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 6, ss.924 - 929, 2018. https://doi.org/10.24925/turjaf.v6i7.923-929.1899
ISNAD turfan, nezahat - MUTLU, Ekrem. "Determination of Resistance Cumhuriyet-75 and Selimiye-95 Wheat (Triticum Aestivum L.) Varieties Against to Some Abiotic Stress Factories". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 6/7 (2018), 924-929. https://doi.org/https://doi.org/10.24925/turjaf.v6i7.923-929.1899