Yıl: 2019 Cilt: 27 Sayı: 4 Sayfa Aralığı: 2488 - 2495 Metin Dili: İngilizce DOI: 10.3906/elk-1811-151 İndeks Tarihi: 18-05-2020

Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers

Öz:
We report a continuous-wave operation of Tm:YAG and Tm:LuAG lasers pumped with a low-cost, multimodeAlGaAs laser diode. First, the lifetime and the absorbance behavior of 5 mm, 6% Tm3+ -doped YAG and LuAG crystalswere thoroughly investigated. A low-cost multimode 3W laser diode at 781 nm was then used as a pump source for theTm3+ -doped laser systems. Using three different output couplers, up to 636 mW of output power was obtained fromTm:YAG laser, with a slope efficiency of 29% at 2017 nm. The maximum output power was 637 mW in the Tm:LuAGlaser, with a slope efficiency of 28% at 2023 nm. The lasing performances showed a decreasing slope efficiency with anincreasing level of output coupling, which leads to a high upconversion. Furthermore, using a birefringent filter in theresonators, the laser outputs were tuned from 1942 to 2086 nm in the Tm:YAG resonator and from 1931 to 2107 nm inthe Tm:LuAG case.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik Bilgisayar Bilimleri, Yazılım Mühendisliği Bilgisayar Bilimleri, Sibernitik Bilgisayar Bilimleri, Bilgi Sistemleri Bilgisayar Bilimleri, Donanım ve Mimari Bilgisayar Bilimleri, Teori ve Metotlar Bilgisayar Bilimleri, Yapay Zeka
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Demirbas U, Sennaroglu A, Kärtner FX, Fujimoto JG. Comparative investigation of diode pumping for continuouswave and mode-locked Cr 3+ :LiCAF lasers. Journal of the Optical Society of America B 2009; 26 (1): 64-79. doi: 10.1364/JOSAB.26.000064
  • [2] Wolters M, Kramer MW, Becker JU, Christgen M, Nagele U et al. Tm:YAG laser en bloc mucosectomy for accurate staging of primary bladder cancer: early experience. World Journal of Urology 2011; 29 (4): 429-432. doi: 10.1007/s00345-011-0686-z
  • [3] Musi G, Russo A, Conti A, Mistretta FA, Trapani ED et al. Thulium–yttrium–aluminium–garnet (Tm:YAG) laser treatment of penile cancer: oncological results, functional outcomes, and quality of life. World Journal of Urology 2018; 36 (2): 265-270. doi: 10.1007/s00345-017-2144-z
  • [4] Kallidonis P, Kamal W, Panagopoulos V, Vasilas M, Amanatides L et al. Thulium laser in the upper urinary tract: does the heat generation in the irrigation fluid pose a risk? evidence from an in vivo experimental study. Journal of Endourology 2016; 30 (5): 555-559. doi: 10.1089/end.2015.0768
  • [5] Scott NJ, Cilip CM, Fried NM. Thulium fiber Laser ablation of urinary stones through small-core optical fibers. IEEE Journal of Selected Topics in Quantum Electronics 2009; 15 (2): 435-440.doi: 10.1109/JSTQE.2008.2012133
  • [6] Netsch C, Bach T, Herrmann TRW, Gross AJ. Update on the current evidence for Tm:YAG vapoenucleation of the prostate 2014. World Journal of Urology 2015; 33 (4): 517-524. doi:10.1007/s00345-014-1417-z
  • [7] Targ R, Steakley BC, Hawley JG, Ames LL, Forney P et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10µm. Applied Optics 1996; 35 (36): 7117-7127. doi: 10.1364/AO.35.007117
  • [8] Yu J, Petros M, Singh UN, Refaat TF, Reithmaier K et al. An airborne 2-µm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements. Journal of Atmospheric and Oceanic Technology 2016; 34 (2): 385-400. doi: 10.1175/JTECH-D-16-0112.1
  • [9] Kmetec JD, Kubo TS, Kane TJ, Grund CJ. Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals. Optics Letters 1994; 19 (3): 186-188. doi: 10.1364/OL.19.000186
  • [10] Kaushal H, Kaddoum G. Optical communication in space: challenges and mitigation techniques. IEEE Communications Surveys and Tutorials 2017; 19 (1): 57-96. doi: 10.1109/COMST.2016.2603518
  • [11] Galzerano G, Svelto C, Bava E. Diode-pumped 2µm optical oscillator for high-resolution spectroscopy and frequency metrology. IEEE Transactions on Instrumentation and Measurement 2001; 50 (4): 1003-1006. doi: 10.1109/19.948315
  • [12] Budni PA, Pomeranz LA, Lemons ML, Miller CA, Mosto JR et al. Efficient mid-infrared laser using 1.9-µ-pumped Ho:YAG and ZnGeP2 optical parametric oscillators. Journal of the Optical Society of America B 2000; 17 (5): 723-728. doi: 10.1364/JOSAB.17.000723
  • [13] Nabors CD, Ochoa J, Fan TY, Sanchez A, Choi HK et al. Ho:YAG laser pumped by 1.9-µm diode lasers. IEEE Journal of Quantum Electronics 1995; 31 (9): 1603-1605. doi: 10.1109/3.406370
  • [14] Budni PA, Lemons ML, Mosto JR, Chicklis EP. High-power/high-brightness diode-pumped 1.9-µm thulium and resonantly pumped 2.1-µm holmium lasers. IEEE Journal of Selected Topics in Quantum Electronics 2000; 6 (4): 629-635. doi: 10.1109/2944.883377
  • [15] Lai KS, Phua PB, Wu RF, Lim YL, Lau E et al. 120-W continuous-wave diode-pumped Tm:YAG laser. Optics Letters 2000; 25 (21): 1591-1593. doi: 10.1364/OL.25.001591
  • [16] Rustad G, Stenersen K. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion. IEEE Journal of Quantum Electronics 1996; 32 (9): 1645-1655. doi: 10.1109/3.535370
  • [17] Stoneman RC, Esterowitz L. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. Optics Letters 1990; 15 (9): 486-488. doi: 10.1364/OL.15.000486.
  • [18] Bourdet GL, Muller RA. Tm,Ho:YLF microchip laser under Ti:sapphire and diode pumping. Applied Physics B 2000; 70 (3): 345-349. doi: 10.1007/s003400050055
  • [19] Mateos X, Petrov V, Liu J, Pujol MC, Griebner U et al. Efficient 2-µm continuous-wave laser oscillation of Tm3+ : KLu(WO4 ) 2 . IEEE Journal of Quantum Electronics 2006; 42 (10): 1008-1015. doi: 10.1109/JQE.2006.881629
  • [20] Trapani FD, Mateos X, Petrov V, Agnesi A, Griebner U et al. Continuous-wave laser performance of Tm:LuVO4 under Ti:sapphire laser pumping. Laser Physics 2014; 24 (3): 035806-035806. doi: 10.1088/1054-660X/24/3/035806
  • [21] Mateos X, Trapani FD, Aguiló M, Díaz F, Griebner U et al. Diode-pumped continuous-wave (Ho,Tm):KLu(WO4 ) 2 laser with >1 W output power. Optical Materials Express 2014; 4 (11): 2274-2279. doi: 10.1364/OME.4.002274
  • [22] Barnes NP, Murray KE, Jani MG, Hutcheson RL. Flashlamp-pumped-room-temperature Ho:Tm:LuAG laser. In: Photonics West ’95; San Jose, CA, USA; 1995. pp. 2374-2379.
  • [23] Tsai TY, Birnbaum M. Q-switched 2-µm lasers by use of a Cr 2+ :ZnSe saturable absorber. Applied Optics 2001; 40 (36): 6633-6637. doi: 10.1364/AO.40.006633
  • [24] Zhu H, Zhang Y, Zhang J, Zhang Y, Duan Y et al. 1.96-µm Tm:YAG ceramic laser. IEEE Photonics Journal 2017; 9 (6): 1-7. doi: 10.1109/JPHOT.2017.2766026
  • [25] Yumoto M, Saito N, Urata Y, Wada S. 128 mJ/pulse, laser-diode-pumped, Q-switched Tm:YAG laser. IEEE Journal of Selected Topics in Quantum Electronics 2015; 21 (1): 364-368. doi: 10.1109/JSTQE.2014.2338872.
  • [26] Beyatli E, Naghizadeh S, Kurt A, Sennaroglu A. Low-cost low-threshold diode end-pumped Tm:YAG laser at 2.016 µm. Applied Physics B 2012; 109 (2): 221-225. doi: 10.1007/s00340-012-5188-1
  • [27] Demirbas U. Off-surface optic axis birefringent filters for smooth tuning of broadband lasers. Applied Optics 2017; 56 (28): 7815-7825. doi: 10.1364/AO.56.007815
  • [28] Cairo JA, Deshazer LG, Nella J. Characteristics of room-temperature 2.3-µm laser emission from Tm3+ in YAG and YAIO3 . IEEE Journal of Quantum Electronics 1975; 11 (11): 874-881. doi: 10.1109/JQE.1975.1068541
  • [29] Yorulmaz I, Sennaroglu A. Low-threshold diode-pumped 2.3-µm Tm3+ :YLF lasers. IEEE Journal of Selected Topics in Quantum Electronics 2018; 24 (5): 1-7. doi: 10.1109/JSTQE.2018.2791409
  • [30] Li YF, Wang YZ, Ju YL. Comparative study of LD-pumped Tm:YAG and Tim:LuAG lasers. Laser Physics 2008; 18 (6): 722-724. doi: 10.1134/S1054660X08060042
  • [31] Li YF, Yao BQ, Liu YM, Wang YZ, Ju YL. Widely tunable cw diode-pumped 1.9-µm Tm:GdVO4 laser at room temperature. Chinese Physics Letters 2007; 24 (3): 724-726. doi: 10.1088/0256-307X/24/3/037
  • [32] Sennaroglu A. Photonics and Laser Engineering: Principles, Devices, and Applications. 1st ed. Chicago, IL, USA: McGrew Hill, 2010.
APA BEYATLİ E (2019). Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. , 2488 - 2495. 10.3906/elk-1811-151
Chicago BEYATLİ Ersen Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. (2019): 2488 - 2495. 10.3906/elk-1811-151
MLA BEYATLİ Ersen Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. , 2019, ss.2488 - 2495. 10.3906/elk-1811-151
AMA BEYATLİ E Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. . 2019; 2488 - 2495. 10.3906/elk-1811-151
Vancouver BEYATLİ E Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. . 2019; 2488 - 2495. 10.3906/elk-1811-151
IEEE BEYATLİ E "Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers." , ss.2488 - 2495, 2019. 10.3906/elk-1811-151
ISNAD BEYATLİ, Ersen. "Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers". (2019), 2488-2495. https://doi.org/10.3906/elk-1811-151
APA BEYATLİ E (2019). Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. Turkish Journal of Electrical Engineering and Computer Sciences, 27(4), 2488 - 2495. 10.3906/elk-1811-151
Chicago BEYATLİ Ersen Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. Turkish Journal of Electrical Engineering and Computer Sciences 27, no.4 (2019): 2488 - 2495. 10.3906/elk-1811-151
MLA BEYATLİ Ersen Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. Turkish Journal of Electrical Engineering and Computer Sciences, vol.27, no.4, 2019, ss.2488 - 2495. 10.3906/elk-1811-151
AMA BEYATLİ E Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. Turkish Journal of Electrical Engineering and Computer Sciences. 2019; 27(4): 2488 - 2495. 10.3906/elk-1811-151
Vancouver BEYATLİ E Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers. Turkish Journal of Electrical Engineering and Computer Sciences. 2019; 27(4): 2488 - 2495. 10.3906/elk-1811-151
IEEE BEYATLİ E "Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers." Turkish Journal of Electrical Engineering and Computer Sciences, 27, ss.2488 - 2495, 2019. 10.3906/elk-1811-151
ISNAD BEYATLİ, Ersen. "Low-cost multimode diode-pumped Tm:YAG and Tm:LuAG lasers". Turkish Journal of Electrical Engineering and Computer Sciences 27/4 (2019), 2488-2495. https://doi.org/10.3906/elk-1811-151