Yıl: 2019 Cilt: 11 Sayı: 1 Sayfa Aralığı: 41 - 54 Metin Dili: Türkçe DOI: 10.5336/sportsci.2018-62269 İndeks Tarihi: 21-05-2020

Hipertrofi: Rasyonel Hücresel Mekanizmalar

Öz:
Günümüzde hipertrofi, vücut geliştirme sporu ile uğraşan amatörler/profesyoneller için planlanmış ilave kas kütlesi kazanımı ile ilişkilendirilmesine rağmen, sportif performansa olan katkılarından dolayı performans sporcuları ve genel sağlık düzeylerini korumak/geliştirmek isteyenler içinde çok önemlidir. Literatür incelendiğinde, araştırmalar, bireylerin aynı çalışma yoğunluğuna sahipolmalarına rağmen farklı iskelet-kas hipertrofisine sahip olduklarını rapor etmektedir. Hipertrofikyanıta neden olan fizyolojik yol ve yolakların ne olduğu uzun yıllardır merak konusu olmuştur.Özellikle ülkemiz açısından, bu bağlamda herhangi bir araştırmanın yapılmamış olması dikkat çekicidir. Yaklaşık 2 milyona yakın fitness katılımcısının olduğu düşünüldüğünde, ayrıca hipertrofikonusu üzerine çalışma yürüten akademisyenler, antrenörler, öğrenciler ve sporcular için hipertrofinin olası hücresel mekanizmalarının bilinmesi ve anlaşılması son derece önemli katkılar sunacaktır. Dolayısıyla bu çalışmada, son yıllarda hipertrofik yanıtın muhtemel hücresel mekanizmalarıolan; uydu hücre proliferasyonu, sitokin ve endokrin cevaplar hakkında kanıta dayalı cevaplar verilmeye çalışılmıştır. Bu çalışmada, akut ve kronik kuvvet antrenmanları sonrası görülen hipertrofik yanıtın rasyonel hücresel mekanizmalarının belirlenmeye çalışılması amaçlanmıştır.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Beşeri Bilimler Spor Bilimleri

Hypertrophy: The Rationalize Cellular Mechanisms

Öz:
Although hypertrophy is now associated with planned additional muscle mass gain for amateurs/professionals engaged in bodybuilding sports, it is also important for those who want to maintain/improve performance athletes and general health levels due to their contribution to sporting performance. When the literature is examined, researches reports that individuals have different skeletal muscle hypertrophy level, despite having the same intensity of work. It has been a matter of curiosity for many years what physiological pathways cause hypertrophic response. When it is thought that there are close to 2 million fitness participants, knowing and understanding of the possible cellular mechanisms of hypertrophy for academicians, coaches, students and athletes working on the topic of hypertrophy would be provide extremely important contributions. Therefore, this review has sought to provide evidence-based answers to the probable cellular mechanisms such as stellate cells proliferation, cytokines and endocrine responses of the hypertrophic response in recent years. The purpose of this review is to present literature-based evidence on the rationalize cellular mechanisms of the hypertrophic response.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Beşeri Bilimler Spor Bilimleri
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, et al. Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc. 2005;37(6):964-72. [PubMed]
  • 2. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985). 2008;104(6):1736-42. [Crossref] [PubMed]
  • 3. Devaney JM, Tosi LL, Fritz DT, GordishDressman HA, Jiang S, Orkunoglu-Suer FE, et al. Differences in fat and muscle mass associated with a functional human polymorphism in a post-transcriptional BMP2 gene regulatory element. J Cell Biochem. 2009;107(6):1073-82. [Crossref] [PubMed] [PMC]
  • 4. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002; 81(11 Suppl):52-69. [Crossref]
  • 5. Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol (1985). 2004;97(6):2214-9. [Crossref] [PubMed] [PMC]
  • 6. Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillip SM, et al. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One. 2014;9(10):e109739. [Crossref] [PubMed] [PMC]
  • 7. Phillips SM. Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Appl Physiol Nutr Metab. 2009;34(3):403-10. [Crossref] [PubMed]
  • 8. Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, et al. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol. 2008;102(2):145-52. [Crossref] [PubMed]
  • 9. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol (1985). 2011;110(2):309-17. [Crossref] [PubMed]
  • 10. Schoenfeld B. Science and Development of Muscle Hypertrophy. 1st ed. Champaign, IL: Human Kinetics; 2016. p.224.
  • 11. Vierck J, O’Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int. 2000;24(5):263-72. [Crossref] [PubMed]
  • 12. Martin NR, Lewis MP. Satellite cell activation and number following acute and chronic exercise: a mini review. Cell Mol Exerc Physiol. 2012;1(1):1-5.e3. [Crossref]
  • 13. Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJ, et al. Satellite cells in human skeletal muscle plasticity. Front Physiol. 2015;6:283. [Crossref] [PubMed] [PMC]
  • 14. Pugh JK, Faulkner SH, TurnerMC, NimmoMA. Satellite cell response to concurrent resistance exercise and high-intensity interval training in sedentary, overweight/obese, middle-aged individuals. Eur J Appl Physiol. 2018;118(2):225- 38. [Crossref] [PubMed] [PMC]
  • 15. Crameri RM, Langberg H, Magnusson P, Jensen CH, Schrøder HD, Olesen JL, et al. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol. 2004;558(Pt 1):333-40. [Crossref] [PubMed] [PMC]
  • 16. O’Reilly C, McKay B, Phillips S, Tarnopolsky M, Parise G. Hepatocyte growth factor (HGF) and the satellite cell response following muscle lengthening contractions in humans. Muscle Nerve. 2008;38(5):1434-42. [Crossref] [PubMed]
  • 17. McKay BR, De Lisio M, Johnston AP, O’Reilly CE, Phillips SM, Tarnopolsky MA, et al. Association of interleukin-6 signalling with the muscle stem cell response following musclelengthening contractions in humans. PLoS One. 2009;4(6):e6027. [Crossref] [PubMed] [PMC]
  • 18. Mikkelsen UR, Langberg H, Helmark IC, Skovgaard D, Andersen LL, Kjaer M, et al. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol (1985). 2009;107(5): 1600-11. [Crossref] [PubMed] [PMC]
  • 19. McKay BR, O’Reilly CE, Phillips SM, Tarnopolsky MA, Parise G. Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging musclelengthening contraction humans. J Physiol. 2008;586(22):5549-60. [Crossref] [PubMed] [PMC]
  • 20. Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011;193(2):257-66. [Crossref] [PubMed] [PMC]
  • 21. Van der Meer SF, Jaspers RT, Degens H. Is the myonuclear domain size fixed? Musculoskelet Neuronal Interact. 2011;11(4):286-97.
  • 22. Murach KA, Englund DA, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear domain flexibility challenges rigid assumptions on satellite cell contribution to skeletal muscle fiber hypertrophy. Front Physiol. 2018;9:635. [Crossref] [PubMed] [PMC]
  • 23. Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Døssing S, et al. The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol (1985). 2007;103(2): 425- 31. [Crossref] [PubMed]
  • 24. Allen DG, Whitehead NP, Yeung EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol. 2005;567(3):723-35. [Crossref] [PubMed] [PMC]
  • 25. Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 1971;170(4):421-35. [Crossref] [PubMed]
  • 26. Barton-Davis ER, Shoturma DI, Sweeney HL. Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand. 1999;167(4):301-5. [Crossref] [PubMed]
  • 27. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433 (7027):760-4. [Crossref] [PubMed]
  • 28. Denne SC, Liechty EA, Liu YM, Brechtel G, Baron AD. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol. 1991;261(6 Pt 1):809-14.
  • 29. Gelfand RA, Barrett EJ. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987;80(1):1-6. [Crossref] [PubMed] [PMC]
  • 30. Heslin MJ, Newman E, Wolf RF, Pisters PW, Brennan MF. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am J Physiol. 1992;262(6 Pt 1):E911-8. [PubMed]
  • 31. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001;3(11):1009- 13. [Crossref] [PubMed]
  • 32. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 2008;23: 160-70. [Crossref]
  • 33. Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol. 2007;92(5):783-97. [Crossref] [PubMed]
  • 34. Spangenburg EE, Le Roith D, Ward CW, Bodine SC. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol. 2008;586(1):283-91. [Crossref] [PubMed] [PMC]
  • 35. Spangenburg EE. Changes in muscle mass with mechanical load: possible cellular mechanisms. Appl Physiol Nutr Metab. 2009;34(3):328-35. [Crossref] [PubMed]
  • 36. O’Connor RS, Pavlath GK. Point: counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol (1985). 2007;103(3):1099-100. [Crossref] [PubMed]
  • 37. McCarthy JJ, Esser KA. Counterpoint: satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol (1985). 2007;103(3):1100-2. [Crossref] [PubMed]
  • 38. Buresh R, Berg K, French J. The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J Strength Cond Res. 2009;23(1):62- 71. [Crossref] [PubMed]
  • 39. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335(1):1-7. [Crossref] [PubMed]
  • 40. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005;90(2):678-88. [Crossref] [PubMed]
  • 41. Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab. 2006;91(8):3024-33. [Crossref] [PubMed]
  • 42. Bhasin S, Woodhouse L, Storer TW. Proof of the effect of testosterone on skeletal muscle. J Endocrinol. 2001;170(1):27-38. [Crossref] [PubMed]
  • 43. Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe RR, et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol. 1995;269(5 Pt 1): E820-6. [PubMed]
  • 44. Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, Cardozo CP. Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol. 2008;110(1-2):125- 9. [Crossref] [PubMed]
  • 45. Veldhuis JD, Keenan DM, Mielke K, Miles JM, Bowers CY. Testosterone supplementation in healthy older men drives GH and IGF-I secretion without potentiating peptidyl secretagogue efficacy. Eur J Endocrinol. 2005;153(4):577- 86. [Crossref] [PubMed]
  • 46. Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 2010;40(12):1037-53. [Crossref] [PubMed]
  • 47. Spiering BA, Kraemer WJ, Vingren JL, Ratamess NA, Anderson JM, Armstrong LE, et al. Elevated endogenous testosterone concentrations potentiate muscle androgen receptor responses to resistance exercise. J Steroid Biochem Mol Biol. 2009;114(3-5):195- 9. [Crossref] [PubMed]
  • 48. Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008;154(3):557-68. [Crossref] [PubMed] [PMC]
  • 49. Aperghis M, Velloso CP, Hameed M, Brothwood T, Bradley L, Bouloux PM, et al. Serum IGF-I levels and IGF-I gene splicing in muscle of healthy young males receiving rhGH. Growth Horm IGF Res. 2009;19(1):61-7. [Crossref] [PubMed]
  • 50. Hameed M, Lange KH, Andersen JL, ling P, Kjaer M, Harridge SD, et al. The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol. 2004;555(Pt 1):231-40. [Crossref] [PubMed] [PMC]
  • 51. Rigamonti AE, Locatelli L, Cella SG, Bonomo SM, Giunta M, Molinari F, et al. Muscle expressions of MGF, IGF-IEa, and myostatin in intact and hypophysectomized rats: effects of rhGH and testosterone alone or combined. Horm Metab Res. 2009;41(1):23-9. [Crossref] [PubMed]
  • 52. Sotiropoulos A,OhannaM, KedziaC,MenonRK, Kopchick JJ,KellyPA, et al.Growth hormone promotes skeletalmuscle cell fusion independent of insulin-like growth factor 1 up-regulation.ProcNatl Acad Sci U S A. 2006;103(19):7315-20. [Crossref] [PubMed] [PMC]
  • 53. Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc. 2005;37(6):955-63. [PubMed]
  • 54. Häkkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol (1985). 1993;74(2):882-7. [Crossref] [PubMed]
  • 55. Pierce JR, Clark BC, Ploutz-Snyder LL, Kanaley JA. Growth hormone and muscle function responses to skeletal muscle ischemia. J Appl Physiol (1985). 2006;101(6):1588-95. [Crossref] [PubMed]
  • 56. Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 1993;95(1):65- 73. [Crossref] [PubMed]
  • 57. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985). 2000;88(1):61-5. [Crossref] [PubMed]
  • 58. Loenneke JP, Wilson GJ, Wilson JM. A mechanistic approach to blood flow occlusion. Int J Sports Med. 2010;31(1):1-4. [Crossref] [PubMed]
  • 59. Viru M, Jansson E, Viru A, Sundberg CJ. Effect of restricted blood flow on exercise-induced hormone changes in healthy men. Eur J Appl Physiol Occup Physiol. 1998;77(6):517- 22. [Crossref] [PubMed]
  • 60. Kraemer WJ, Gordon SE, Fleck SJ, Marchitelli LJ, Mello R, Dziados JE, et al. Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med. 1991;12(2):228-35. [Crossref] [PubMed]
  • 61. Gotshalk LA, Loebel CC, Nindl BC, Putukian M, Sebastianelli WJ, Newton RU, et al. Hormonal responses of multiset versus singleset heavy-resistance exercise protocols. Can J Appl Physiol. 1997;22(3):244-55. [Crossref] [PubMed]
  • 62. McCaulley GO, McBride JM, Cormie P, Hudson MB, Nuzzo JL, Quindry JC, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695-704. [Crossref] [PubMed]
  • 63. Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol (1985). 2006;101(6):1616-22. [Crossref] [PubMed]
  • 64. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, et al. Dose effect on intramuscular metabolic stress during lowintensity resistance exercise with blood flow restriction. J Appl Physiol (1985). 2010;108(6) :1563-7. [Crossref] [PubMed]
  • 65. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4): 339-61. [Crossref] [PubMed]
  • 66. Hansen S, Kvorning T, Kjaer M, Sjøgaard G. The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports. 2001;11(6):347-54. [Crossref] [PubMed]
  • 67. Loenneke JP, Fahs CA, Wilson JM, Bemben MG. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011;77(5):748-52. [Crossref] [PubMed]
  • 68. West DW, Phillips SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sportsmed. 2010;38(3):97-104. [Crossref] [PubMed]
  • 69. Lange KH, Andersen JL, Beyer N, Isaksson F, Larsson B, Rasmussen MH, et al. GH administration changes myosin heavy chain isoforms in skeletal muscle but does not augment muscle strength or hypertrophy, either alone or combined with resistance exercise training in healthy elderly men. J Clin Endocrinol Metab. 2002;87(2):513-23. [Crossref] [PubMed]
  • 70. Nindl BC, Hymer WC, Deaver DR, Kraemer WJ. Growth hormone pulsatility profile characteristics following acute heavy resistance exercise. J Appl Physiol (1985). 2001;91(1):163-72. [Crossref] [PubMed]
  • 71. Ehrnborg C, Rosén T. Physiological and pharmacological basis for the ergogenic effects of growth hormone in elite sports. Asian J Androl. 2008;10(3):373-83. [Crossref] [PubMed]
  • 72. West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239-47. [Crossref] [PubMed] [PMC]
  • 73. Coffey VG, Shield A, Canny BJ, Carey KA, Cameron-Smith D, Hawley JA. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab. 2006;290(5):849-55. [Crossref] [PubMed]
  • 74. McCall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol. 1999;24(1):96-107. [Crossref] [PubMed]
  • 75. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555-63. [Crossref] [PubMed]
  • 76. Pillon NJ, Bilan PJ, Fink LN, Klip A. Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab. 2013;304(5):E453-65. [Crossref] [PubMed]
  • 77. Pistilli EE, Quinn LS. From anabolic to oxidative: reconsidering the roles of IL-15 and IL-15 Rα in skeletal muscle. Exerc Sport Sci Rev. 2013;41(2):100-6. [Crossref] [PubMed] [PMC]
  • 78. Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007;32(5):833-9. [Crossref] [PubMed]
  • 79. Quinn LS. Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition. J Anim Sci. 2008;86(14 Suppl):E75-83. [Crossref] [PubMed]
  • 80. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7(1):33-44. [Crossref] [PubMed]
  • 81. Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33(3):114-9. [Crossref]
  • 82. Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM. Muscular and systemic correlates of resistance traininginduced muscle hypertrophy. PLoS One. 2013;8(10):e78636. [Crossref] [PubMed] [PMC]
  • 83. Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214(Pt 2):337-46. [Crossref] [PubMed]
  • 84. Kami K, Senba E. Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle. Muscle Nerve. 1998;21(6):819-22. [Crossref]
  • 85. Tomiya A, Aizawa T, Nagatomi R, Sensui H, Kokubun S. Myofibers express IL-6 after eccentric exercise. Am J Sports Med. 2004; 32(2):503-8. [Crossref] [PubMed]
  • 86. Quinn LS, Anderson BG, Conner JD, Pistilli EE, Wolden-Hanson T. Overexpression of interleukin-15 in mice promotes resistance to diet-induced obesity, increased insulin sensitivity, and markers of oxidative skeletal muscle metabolism. Int J Interferon Cytokine Mediat Res. 2011;3:29-42. [Crossref] [PubMed] [PMC]
  • 87. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8): 457-65. [Crossref] [PubMed]
  • 88. Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H, Magnan M, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells. 2013;31(2):384-96. [Crossref] [PubMed]
  • 89. Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, et al. Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol. 2009;587(Pt 22):5483-92. [Crossref] [PubMed] [PMC]
  • 90. Kim JS, Petrella JK, Cross JM, Bamman MM. Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol (1985). 2007; 103(5):1488-95. [Crossref] [PubMed]
  • 91. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83-90. [Crossref] [PubMed]
  • 92. Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350(26):2682-8. [Crossref] [PubMed]
  • 93. Kim JS, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab. 2005;288(6):E1110-9. [Crossref] [PubMed]
  • 94. Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE, et al. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol (1985). 2014;116(6):693-702. [Crossref] [PubMed]
  • 95. Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda). 2005;20:232-8. [Crossref]
  • 96. Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab. 2001;280(3):E383- 90. [Crossref] [PubMed]
  • 97. Adams G. The molecular response of skeletal muscle to resistance training. Deutsche Zeitschrift für Sportmedizin. 2010;61(3):61-7. [Crossref] [PubMed] [PMC]
  • 98. Adams G, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Comp Physiol. 2012;2(4):2829-70. [Crossref]
APA KAFKAS M, Kurt C (2019). Hipertrofi: Rasyonel Hücresel Mekanizmalar. , 41 - 54. 10.5336/sportsci.2018-62269
Chicago KAFKAS M. Emin,Kurt Cem Hipertrofi: Rasyonel Hücresel Mekanizmalar. (2019): 41 - 54. 10.5336/sportsci.2018-62269
MLA KAFKAS M. Emin,Kurt Cem Hipertrofi: Rasyonel Hücresel Mekanizmalar. , 2019, ss.41 - 54. 10.5336/sportsci.2018-62269
AMA KAFKAS M,Kurt C Hipertrofi: Rasyonel Hücresel Mekanizmalar. . 2019; 41 - 54. 10.5336/sportsci.2018-62269
Vancouver KAFKAS M,Kurt C Hipertrofi: Rasyonel Hücresel Mekanizmalar. . 2019; 41 - 54. 10.5336/sportsci.2018-62269
IEEE KAFKAS M,Kurt C "Hipertrofi: Rasyonel Hücresel Mekanizmalar." , ss.41 - 54, 2019. 10.5336/sportsci.2018-62269
ISNAD KAFKAS, M. Emin - Kurt, Cem. "Hipertrofi: Rasyonel Hücresel Mekanizmalar". (2019), 41-54. https://doi.org/10.5336/sportsci.2018-62269
APA KAFKAS M, Kurt C (2019). Hipertrofi: Rasyonel Hücresel Mekanizmalar. Türkiye Klinikleri Spor Bilimleri Dergisi, 11(1), 41 - 54. 10.5336/sportsci.2018-62269
Chicago KAFKAS M. Emin,Kurt Cem Hipertrofi: Rasyonel Hücresel Mekanizmalar. Türkiye Klinikleri Spor Bilimleri Dergisi 11, no.1 (2019): 41 - 54. 10.5336/sportsci.2018-62269
MLA KAFKAS M. Emin,Kurt Cem Hipertrofi: Rasyonel Hücresel Mekanizmalar. Türkiye Klinikleri Spor Bilimleri Dergisi, vol.11, no.1, 2019, ss.41 - 54. 10.5336/sportsci.2018-62269
AMA KAFKAS M,Kurt C Hipertrofi: Rasyonel Hücresel Mekanizmalar. Türkiye Klinikleri Spor Bilimleri Dergisi. 2019; 11(1): 41 - 54. 10.5336/sportsci.2018-62269
Vancouver KAFKAS M,Kurt C Hipertrofi: Rasyonel Hücresel Mekanizmalar. Türkiye Klinikleri Spor Bilimleri Dergisi. 2019; 11(1): 41 - 54. 10.5336/sportsci.2018-62269
IEEE KAFKAS M,Kurt C "Hipertrofi: Rasyonel Hücresel Mekanizmalar." Türkiye Klinikleri Spor Bilimleri Dergisi, 11, ss.41 - 54, 2019. 10.5336/sportsci.2018-62269
ISNAD KAFKAS, M. Emin - Kurt, Cem. "Hipertrofi: Rasyonel Hücresel Mekanizmalar". Türkiye Klinikleri Spor Bilimleri Dergisi 11/1 (2019), 41-54. https://doi.org/10.5336/sportsci.2018-62269