Yıl: 2020 Cilt: 28 Sayı: 1 Sayfa Aralığı: 124 - 139 Metin Dili: İngilizce DOI: 10.3906/elk-1907-166 İndeks Tarihi: 30-04-2020

Detailed modeling of a thermoelectric generator for maximum power point tracking

Öz:
Thermoelectric generators (TEGs) are used in small power applications to generate electrical energy fromwaste heats. Maximum power is obtained when the connected load to the ends of TEGs matches their internal resistance.However, impedance matching cannot always be ensured. Therefore, TEGs operate at lower efficiency. For this reason,maximum power point tracking (MPPT) algorithms are utilized. In this study, both TEGs and a boost converter withMPPT were modeled together. Detailed modeling, simulation, and verification of TEGs depending on the Seebeckcoefficient, the hot/cold side temperatures, and the number of modules in MATLAB/Simulink were carried out. Inaddition, a boost converter having a perturb and observation (P&O) MPPT algorithm was added to the TEG modeling.After the TEG output equations were determined, the TEG modeling was performed based on manufacturer data sheets.Thanks to the TEG model and the boost converter with P&O MPPT, the maximum power was tracked with a value of98.64% and the power derived from the TEG was nearly unaffected by the load changes. The power outputs obtainedfrom the system with and without MPPT were compared to emphasize the importance of MPPT. These simulationvalues were verified by using an experimental setup. Ultimately, the proposed modeling provides a system of TEGs anda boost converter having P&O MPPT.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik Bilgisayar Bilimleri, Yazılım Mühendisliği Bilgisayar Bilimleri, Sibernitik Bilgisayar Bilimleri, Bilgi Sistemleri Bilgisayar Bilimleri, Donanım ve Mimari Bilgisayar Bilimleri, Teori ve Metotlar Bilgisayar Bilimleri, Yapay Zeka
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Mamur H, Ahiska, R. A review: thermoelectric generators in renewable energy. International Journal of Renewable Energy Research (IJRER) 2014; 4 (1): 128-136.
  • [2] Champier D. Thermoelectric generators: a review of applications. Energy Conversion and Management 2017; 140: 167-181. doi: 10.1016/j.enconman.2017.02.070
  • [3] Yavuz AH. Design of a fuzzy logic controlled thermoelectric brain hypothermia system. Turkish Journal of Electrical Engineering & Computer Sciences 2016; 24 (6): 4984-4994. doi: 10.3906/elk-1405-137
  • [4] Ahiska R. New method for investigation of dynamic parameters of thermoelectric modules. Turkish Journal of Electrical Engineering & Computer Sciences 2007; 15 (1): 51-65.
  • [5] Omer G, Yavuz AH, Ahiska R. Heat pipes thermoelectric solar collectors for energy applications. International Journal of Hydrogen Energy 2017; 42 (12): 8310-8313. doi: 10.1016/j.ijhydene.2017.01.132
  • [6] Jagadish PR, Khalid M, Li LP, Hajibeigy MT, Amin N et al. Cost effective thermoelectric composites from recycled carbon fibre: from waste to energy. Journal of Cleaner Production 2018; 195: 1015-1025. doi: 10.1016/j.jclepro.2018.05.238
  • [7] Mamur H, Ahiska R. Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators. Energy Conversion and Management 2015; 97: 265-272. doi: 10.1016/j.enconman.2015.03.068
  • [8] Liu YH, Chiu YH, Huang JW, Wang SC. A novel maximum power point tracker for thermoelectric generation system. Renewable Energy 2016; 97: 306-318. doi: 10.1016/j.renene.2016.05.001
  • [9] Twaha S, Zhu J, Yan Y, Li B, Huang K. Performance analysis of thermoelectric generator using dc-dc converter with incremental conductance based maximum power point tracking. Energy for Sustainable Development 2017; 37: 86-98. doi: 10.1016/j.esd.2017.01.003
  • [10] Quan R, Zhou W, Yang G, Quan S, A hybrid maximum power point tracking method for automobile exhaust thermoelectric generator. Journal of Electronic Materials 2017; 46 (5): 2676-2683. doi: 10.1007/s11664-016-4875-9
  • [11] Montecucco A, Knox A. Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators. IEEE Transactions on Power Electronics 2015; 30 (2): 828-839. doi: 10.1109/TPEL.2014.2313294
  • [12] Zainal NA, Yusoff AR, Apen A. Integrated cooling systems and maximum power point tracking of fuzzy logic controller for improving photovoltaic performances. Measurement 2019; 131: 100-108. doi: 10.1016/j.measurement.2018.08.056
  • [13] Basha CHH, Rani C, Odofin S. A review on non-isolated inductor coupled DC-DC converter for photovoltaic grid-connected applications. International Journal of Renewable Energy Research (IJRER) 2017; 7 (4): 1570-1585.
  • [14] Kwan TH, Wu X. Maximum power point tracking using a variable antecedent fuzzy logic controller. Solar Energy 2016; 137: 189-200. doi: 10.1016/j.solener.2016.08.008
  • [15] Husain MA, Tariq A, Hameed S, Arif MSB, Jain A. Comparative assessment of maximum power point tracking procedures for photovoltaic systems. Green Energy & Environment 2017; 2 (1): 5-17. doi: 10.1016/j.gee.2016.11.001
  • [16] Ezinwanne O, Zhongwen F, Zhijun L. Energy performance and cost comparison of MPPT techniques for photovoltaics and other applications. Energy Procedia 2017; 107: 297-303. doi: 10.1016/j.egypro.2016.12.156
  • [17] Heidari M. Improving efficiency of photovoltaic system by using neural network MPPT and predictive control of converter. International Journal of Renewable Energy Research (IJRER) 2016; 6 (4): 1524-1529.
  • [18] Zhang X, Chau KT. An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking. Energy Conversion and Management 2011; 52 (1): 641-647. doi: 10.1016/j.enconman.2010.07.041
  • [19] Dalala Z, Saadeh O, Bdour M, Zahid Z. A new maximum power point tracking (MPPT) algorithm for thermoelectric generators with reduced voltage sensors count control. Energies 2018; 11 (7): 1-16. doi: 10.3390/en1107182
  • [20] Liu C, Chen P, Li K. A 500 W low-temperature thermoelectric generator: design and experimental study. International Journal of Hydrogen Energy 2014; 39 (28): 15497-15505. doi: 10.1016/j.ijhydene.2014.07.163
  • [21] Wu SJ, Wang S, Yang CJ, Xie KR. Energy management for thermoelectric generators based on maximum power point and load power tracking. Energy Conversion and Management 2018; 177: 55-63. doi: 10.1016/j.enconman.2018.09.040
  • [22] Tsai HL, Lin JM. Model building and simulation of thermoelectric module using Matlab/Simulink. Journal of Electronic Materials 2010; 39 (9): 2105-2111. doi: 10.1007/s11664-009-0994-x
  • [23] Man EA, Sera D, Mathe L, Schaltz E, Rosendahl L. Dynamic performance of maximum power point trackers in TEG systems under rapidly changing temperature conditions. Journal of Electronic Materials 2016; 45 (3): 1309-1315. doi: 10.1007/s11664-015-4015-y
  • [24] Montecucco A, Siviter J, Knox AR. The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel. Applied Energy 2014; 123: 47-54. doi: 10.1016/j.apenergy.2014.02.030
  • [25] Babu C, Ponnambalam P. The theoretical performance evaluation of hybrid PV-TEG system. Energy Conversion and Management 2018; 173: 450-460. doi: 10.1016/j.enconman.2018.07.104
  • [26] Irshad K, Habib K, Saidur R, Kareem MW, Saha BB. Study of thermoelectric and photovoltaic facade system for energy efficient building development: a review. Journal of Cleaner Production 2018; 209: 1376-1395. doi: 10.1016/j.jclepro.2018.09.245
  • [27] Salmi T, Bouzguenda M, Gastli A, Masmoudi A. Matlab/Simulink based modeling of photovoltaic cell. International Journal of Renewable Energy Research (IJRER) 2012; 2 (2): 213-218.
  • [28] Molina MG, Espejo EJ. Modeling and simulation of grid-connected photovoltaic energy conversion systems. International Journal of Hydrogen Energy 2014; 39 (16): 8702-8707. doi: 10.1016/j.ijhydene.2013.12.048
  • [29] Mohammed SS, Devaraj D, Ahamed TI. Modeling, simulation and analysis of photovoltaic modules under partially shaded conditions. Indian Journal of Science and Technology 2016; 9 (16): 1-8. doi: 10.17485/ijst/2016/v9i16/92751
  • [30] Abbasoğlu S, Babatunde AA. Evaluation of field data and simulation results of a photovoltaic system in countries with high solar radiation. Turkish Journal of Electrical Engineering & Computer Sciences 2015; 23 (6): 1608-1618. doi: 10.3906/elk-1402-313
  • [31] Bellia H, Youcef R, Fatima M. A detailed modeling of photovoltaic module using MATLAB. NRIAG Journal of Astronomy and Geophysics 2014; 3 (1): 53-61. doi: 10.1016/j.nrjag.2014.04.001
  • [32] Chouder A, Silvestre S, Sadaoui N, Rahmani L. Modeling and simulation of a grid connected PV system based on the evaluation of main PV module parameters. Simulation Modelling Practice and Theory 2012; 20 (1): 46-58. doi: 10.1016/j.simpat.2011.08.011
  • [33] Al-Majidi SD, Abbod MF, Al-Raweshidy HS. A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems. International Journal of Hydrogen Energy 2018; 43 (31): 14158-14171. doi: 10.1016/j.ijhydene.2018.06.002
APA MAMUR H, ÇOBAN Y (2020). Detailed modeling of a thermoelectric generator for maximum power point tracking. , 124 - 139. 10.3906/elk-1907-166
Chicago MAMUR HAYATİ,ÇOBAN Yusuf Detailed modeling of a thermoelectric generator for maximum power point tracking. (2020): 124 - 139. 10.3906/elk-1907-166
MLA MAMUR HAYATİ,ÇOBAN Yusuf Detailed modeling of a thermoelectric generator for maximum power point tracking. , 2020, ss.124 - 139. 10.3906/elk-1907-166
AMA MAMUR H,ÇOBAN Y Detailed modeling of a thermoelectric generator for maximum power point tracking. . 2020; 124 - 139. 10.3906/elk-1907-166
Vancouver MAMUR H,ÇOBAN Y Detailed modeling of a thermoelectric generator for maximum power point tracking. . 2020; 124 - 139. 10.3906/elk-1907-166
IEEE MAMUR H,ÇOBAN Y "Detailed modeling of a thermoelectric generator for maximum power point tracking." , ss.124 - 139, 2020. 10.3906/elk-1907-166
ISNAD MAMUR, HAYATİ - ÇOBAN, Yusuf. "Detailed modeling of a thermoelectric generator for maximum power point tracking". (2020), 124-139. https://doi.org/10.3906/elk-1907-166
APA MAMUR H, ÇOBAN Y (2020). Detailed modeling of a thermoelectric generator for maximum power point tracking. Turkish Journal of Electrical Engineering and Computer Sciences, 28(1), 124 - 139. 10.3906/elk-1907-166
Chicago MAMUR HAYATİ,ÇOBAN Yusuf Detailed modeling of a thermoelectric generator for maximum power point tracking. Turkish Journal of Electrical Engineering and Computer Sciences 28, no.1 (2020): 124 - 139. 10.3906/elk-1907-166
MLA MAMUR HAYATİ,ÇOBAN Yusuf Detailed modeling of a thermoelectric generator for maximum power point tracking. Turkish Journal of Electrical Engineering and Computer Sciences, vol.28, no.1, 2020, ss.124 - 139. 10.3906/elk-1907-166
AMA MAMUR H,ÇOBAN Y Detailed modeling of a thermoelectric generator for maximum power point tracking. Turkish Journal of Electrical Engineering and Computer Sciences. 2020; 28(1): 124 - 139. 10.3906/elk-1907-166
Vancouver MAMUR H,ÇOBAN Y Detailed modeling of a thermoelectric generator for maximum power point tracking. Turkish Journal of Electrical Engineering and Computer Sciences. 2020; 28(1): 124 - 139. 10.3906/elk-1907-166
IEEE MAMUR H,ÇOBAN Y "Detailed modeling of a thermoelectric generator for maximum power point tracking." Turkish Journal of Electrical Engineering and Computer Sciences, 28, ss.124 - 139, 2020. 10.3906/elk-1907-166
ISNAD MAMUR, HAYATİ - ÇOBAN, Yusuf. "Detailed modeling of a thermoelectric generator for maximum power point tracking". Turkish Journal of Electrical Engineering and Computer Sciences 28/1 (2020), 124-139. https://doi.org/10.3906/elk-1907-166