Yıl: 2020 Cilt: 29 Sayı: 2 Sayfa Aralığı: 325 - 346 Metin Dili: İngilizce DOI: 10.3906/yer-1906-7 İndeks Tarihi: 05-05-2020

Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran

Öz:
The Kejal kaolin deposit, situated in the northwest of Iran, is considered a small part of the Hashtjin hydrothermal zone. Thekaolinization process in this deposit has occurred in ignimbritic and volcanic tuff parent rocks in different grades such that severelykaolinized samples can be found in the middle section of the kaolinization profile. Kaolinite is the most abundant clay mineral in thestudied samples. Quartz and cristobalite are the main minerals while anatase is the minor mineral of the kaolin samples. Among themajor oxides, SiO2, Al2O3, and TiO2 show the highest concentrations in kaolin samples. The mass change calculations based on Tishow enrichment of Si, Al, Sr, and LREEs and depletion of alkali and alkali earth elements, HREEs, and HFSEs. The evaluation of REEsnormalized to chondrite represents the higher concentration of LREEs comparing to HREEs. A remarkable positive Gd anomaly is seenin spider diagrams, which can be attributed to the primary CaO in the composition of ignimbritic precursor and also the Gd release dueto the decomposition of Gd complexes and adsorption by clay minerals. The Eu negative anomaly is the other obvious characteristicof the studied samples and is most likely related to the alteration of feldspars, decomposition of plagioclase, and Eu liberation from thesystem. The significant positive correlations between REEs and Al2O3, TiO2, and P2O5 demonstrate the important role of clay minerals,REE-bearing phosphate minerals such as monazite, and titanium minerals like anatase and rutile in the kaolinization process and REEtransport and establishment. The performed particle size test based on the hydrometer method shows about 20% of particles <2 µmand 36%-42% of particles <25 µm, which reveals a dominant medium particle size for these kaolin samples. Furthermore, the chemicalcomposition of the analyzed samples represents around 20% alumina. Based on the obtained physicochemical evaluations, the Kejalkaolin deposit is medium- to low-grade kaolin, which is useable after simple processing in the paper industry as filler and in the ceramicindustry as floor tiles.
Anahtar Kelime:

Konular: Jeoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abedini A, Alipour S, Khosravi M (2015). Investigation of mineralogy, geochemistry and industrial applications of Darzivali bauxite ores, east of Bukan, NW Iran. Scientific Quarterly Journal of Geosciences 24 (94): 293-304 (in Persian).
  • Abedini A, Calagari AA (2015). Geochemical characteristics of the Abgharm kaolin deposit, NW Iran. Neues Jahrbuch für Mineralogie Abhandlugen 278 (3): 125-139.
  • Abedini A, Masoumi R, Calagari AA (2011). Geochemical features of Kejal kaolin deposit, NW Hashtjin, Ardabil province. Journal of Economic Geology 2 (3): 165-181 (in Persian).
  • Aghanabati A (2004). Geology of Iran. 1st ed. Tehran, Iran: Geological Survey of Iran (in Persian).
  • Ahmadnejad F, Zamanian H, Taghipour B, Zarasvandi A, Buccione R et al. (2017). Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: implications for ore genesis, rare earth elements fractionation and parental affinity. Ore Geology Reviews 86: 755-783.
  • Al-Ani T, Sarapää O, Juhanson B (2009). Concentration and Residence of Rare Earth Elements (REE) in Kaolin and Weathered Rock of Virtasalmi, Taivalkoski and Puolanka Deposits, in Eastern Finland. GTK Internal Report. Helsinki, Finland: Geological Survey of Finland.
  • Alavi M (1996). Tectonostratigraphic synthesis and structural style of the Alborz Mountains system northern Iran. Journal of Geodynamics 21 (1): 1- 33.
  • Aref AA, Lei XR (2009). Characterization and evaluation of Algaof kaolin deposits of Yemen for industrial application. American Journal of Engineering and Applied Sciences 2 (2): 292-296.
  • Arslan M, Kadir S, Abdioglu E, Kolayli H (2006). Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey. Clay Minerals 41 (2): 597-617.
  • ASTM (1998). D422-63. Standard Test Method for Particle-Size Analysis of Soils. West Conshohocken, PA, USA: ASTM International.
  • Banifield JF, Eggleton RA (1989). Apatite replacement and REE mobilization, fractionation, and fixation during weathering. Clays and Clay Minerals 37 (2): 113–127.
  • Bau M (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta 63 (1): 67-77.
  • Baumgartner LP, Olsen SN (1995). A least-squares approach to mass transport calculations using the Isocon method. Economic Geology 90 (5): 1261-1270.
  • Beazley KM (1972). Viscosity-concentration relations: in deflocculated kaolin suspensions. Journal of Colloid and Interface Science 41 (1): 105-115.
  • Bloodworth AJ, Highley DE, Mitchell CJ (1993). Industrial Mineral Laboratory Manual: Kaolin. Nottingham, UK: British Geological Survey.
  • Braun JJ, Pagel M, Herbillon A, Rosin C (1993). Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study. Geochimica et Cosmochimica Acta 57 (18): 4419-4434.
  • Braun JJ, Pagel M, Muller JP, Bilong P, Michard A et al. (1990). Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta 54 (3): 781-795
  • Bundy WM (1993). The diverse industrial applications of kaolin. In: Murray HH, Bundy W, Harvey C (editors). Kaolin, Genesis, and Utilization. Special Publication 1. Boulder, Colorado, USA: The Clay Minerals Society, pp. 43-73.
  • Burt DM (1989). Compositional and phase relations among rare earth element minerals. In: Lipin BR, McKay GA (editors). Geochemistry and Mineralogy of Rare Earth Elements. Washington, DC, USA: The Mineralogical Society of America, pp. 259-307.
  • Chetty D, Gutzmer J (2012). REE redistribution during hydrothermal alteration of ores of the Kalahari manganese deposit. Ore Geology Reviews 47: 126-135.
  • Clark AM (1983). Mineralogy of the rare earth elements. In: Henderson P (editor). Rare Earth Element Geochemistry. 1st ed. Amsterdam, the Netherlands: Elsevier, pp. 33-61.
  • Class C, le Roex AP (2008). Ce anomalies in Gough Island lavas - Trace element characteristics of a recycled sediment component. Earth and Planetary Science Letters 265 (3-4): 475-486.
  • Condie KC (1991). Another look at rare-earth elements in shales. Geochimica et Cosmochimica Acta 55 (9): 2527-2531.
  • Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002). Sorption of lanthanides on smectite and kaolinite. Chemical Geology 182 (1): 57-68.
  • Cravero F, Gonzales I, Galan E, Dominguez E (1997). Geology, mineralogy, origin and possible applications of some Argentinian kaolins in the Neuquen basin. Applied Clay Science 12 (1-2): 27-42.
  • Çelik H (2010). Technological characterization and industrial application of two Turkish clays for the ceramic industry. Applied Clay Science 50 (2): 245-254.
  • Davranche M, Pourret O, Gruau G, Dia A, Le Coz-Bouhnik M (2005). Adsorption of REE (III) humate complexes onto MnO2 :experimental evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochimica et Cosmochimica Acta 69 (20): 4825-4835.
  • De Baar HJW, Bacon MP, Brewer PG (1983). Rare earth distributions with a positive Ce anomaly in the Western North Atlantic Ocean. Nature 301: 324-332.
  • Deer WA, Howie RA, Zussmann J (1992). An Introduction to the Rock-Forming Minerals. 2nd ed. New York, NY, USA: Wiley.
  • De Noni JA, Garcia DE, Hotza D (2002). A modified model for the viscosity of ceramic suspensions. Ceramics International 28 (7): 731-735.
  • Elbaz-Poulichet F, Seidel JL, Othoniel C (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Research 36 (4): 1102-1105.
  • Faridi M, Anvari A (2000). Geological Map of Hashtjin (1:100,000). Sheet 5664. Tehran, Iran: Geological Survey of Iran.
  • Fatahi S, Calagari AA, Abedini A, Tabatabaie SH, Mansouri Isfehani M (2017). Mineralogy, technological properties, and industrial application of kaolin deposits at Nivasht and Kabudkamar areas, northwest of Saveh, Central Province. Iranian Journal of Crystallography and Mineralogy 25 (3): 619-628 (in Persian).
  • Fleischer M (1987). Glossary of Mineral Species. 5th ed. Tucson, AZ, USA: Mineralogical Record.
  • Fleischer M, Altschuler ZS (1986). The lanthanides and yttrium in minerals of the apatite group - An analysis of the available data. Neues Jahrbuch für Mineralogie-Monatshefte 10: 467-480.
  • Fulignati P, Gioncada A, Sbrana A (1999). Rare earth element (REE) behaviour in the alteration facies of the active magmatichydrothermal system of Vulcano (Aeolian Islands, Italy). Volcanology and Geothermal Research 88 (4): 325-342.
  • Galán E, Aparicio P, Fernández-Caliani JC, Miras A, Márquez MG et al. (2016). New insights on mineralogy and genesis of kaolin deposits: the Burela kaolin deposit (Northwestern Spain). Applied Clay Science 131: 14-26.
  • Grant JA (2005). Isocon analysis: a brief review of the method and applications. Physics and Chemistry of the Earth 30 (17-18): 997-1004.
  • Gresens RL (1967). Composition-volume relationships of metasomatism. Chemical Geology 2: 47-65.
  • Hajalilou B (1999). Tertiary metallogeny in western AlborzAzerbaijan (Mianeh-Siahroud) focused on Hashtjin area. PhD, Shahid Beheshti University, Tehran, Iran (in Persian). Heinskanen K (1996). Particle Classification. 1st ed. London, UK: Chapman and Hall.
  • Hill IG, Worden RH, Meighan IG (2000). Geochemical evolution of a palaeolaterite: the Interbasaltic Formation, Northern Ireland. Chemical Geology 166 (1-2): 65-84.
  • Hongbing J, Wang S, Ouyang Z, Zhang S, Sun C et al. (2004). Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau. The formation of the Pingba profile. Chemical Geology 203 (1-2): 1-27.
  • Jepson WB (1984). Kaolins: their properties and uses. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 311 (1517): 411-432.
  • Jiang N, Sun S, Chu X, Mizuta T, Ishiyama D (2003). Mobilization and enrichment of high-field strength elements during lateand post-magmatic processes in the Shuiquangou syenitic complex, Northern China. Chemical Geology 200 (1-2): 117- 128.
  • Jiménez-Millán J, Abad I, Nieto F (2008). Contrasting alteration processes in hydrothermally altered dolerites from the Betic Cordillera, Spain. Clay Minerals 43 (2): 267-280.
  • Karadağ MM, Küpeli Ş, Arık F, Ayhan A, Zedef V et al. (2009). Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-Southern Turkey). Chemie Der Erde-Geochemistry 69 (2): 143-159.
  • Kerrich R, Said N (2011). Extreme positive Ce-anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: oxygenated marine bottom waters. Chemical Geology 280 (1- 2): 232-241.
  • Koppi AJ, Edis R, Field DJ, Geering HR, Klessa DA et al. (1996). REEs trends and CeUMn associations in weathered rock from Koongarra, northern territory, Australia. Geochimica et Cosmochimica Acta 60 (10): 1695-1707.
  • Kuşcu M, Yıldız A (2016). The mineralogy, geochemistry, and suitability for ceramic applications of Akharım (Afyonkarahisar, W Turkey) kaolinitic clay. Arabian Journal of Geosciences 9 (7): 510.
  • Leybourne MI, Johannesson KH (2008). Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE + Y patterns in the surface environment. Geochimica et Cosmochimica Acta 72 (24): 5962-5983.
  • Ligas P, Uras I, Dondi M, Marsigli M (1997). Kaolinitic materials from Romana (north-west Sardinia, Italy) and their ceramic properties. Applied Clay Science 12 (1-2): 145-163.
  • MacLean WH (1990). Mass change calculations in altered rock series. Mineralium Deposita 25 (1): 44-49.
  • MacLean WH, Kranidiotis P (1987). Immobile elements as monitors of mass transport in hydrothermal alteration: Phelps Dodge massive sulfde deposit, Matagami. Economic Geology 82 (4): 951-962.
  • Mahjoor AS, Karimi M, Rastegarlari A (2009). Mineralogical and geochemical characteristics of clay deposits from South Abarkouh district of clay deposit (Central Iran) and their applications. Journal of Applied Sciences 9 (4): 601-614.
  • Mameli P, Mongelli G, Oggiano G, Sinisi R (2008). Fe concentration in palaeosols and in clayey marine sediments: two case studies in the Variscan basement of Sardinia (Italy). Clay Minerals 43 (4): 531-547.
  • Manju CS (2002). Mineralogical, morphological and geochemical studies on Kundara and Madayi kaolins, Kerala. PhD, University of Kerala, Kerala, India.
  • Masoumi R (2010). Investigation of mineralogy and geochemistry of kaolin deposit in Kejal area, northwest of Hastjin, Ardebil province. MSc, University of Tabriz, Tabriz, Iran (in Persian).
  • McBride MB (1987). Chemistry of clays and clay minerals. Clays and Clay Minerals 36 (5): 480.
  • McLennan SM (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (editors). Geochemistry and Mineralogy of Rare Earth Elements. 1st ed. Washington, DC, USA: Mineralogical Society of America, pp. 169-200.
  • Middelburg JJ, van der Weijden CH, Woittiez JRW (1988). Chemical processes affecting the mobility of major, minor and trace elements during the weathering of granitic rocks. Chemical Geology 68 (3-4): 253-273.
  • Miyawaki R, Nakai I (1993). Crystal structures of rare-earth minerals. In: Gschneidner KA, Eyring L (editors). Handbook on the Physics and Chemistry of Rare Earths, 16. Amsterdam, the Netherlands: Elsevier, pp. 249-518.
  • Moayed M (2001). The investigation of Tertiary volcano-plutonic belt of Western Alberz-Azerbaijan (Mianeh-Siahroud) with a special regard to Hashtjin area. PhD, Shahid Beheshti University, Tehran, Iran (in Persian).
  • Moghadami I (2011). Geochemical investigations of Zeolitic alteration in volcanic rocks of Kejal area (Northwest of Hashtjin, Ardabil province). MSc, University of Tabriz, Tabriz, Iran (in Persian).
  • Möller P, Dulsky P, Bau M, Knappe A, Pekdeger A et al. (2000). Anthropogenic gadolinium as a conservative tracer in hydrology. Journal of Geochemical Exploration 69-70: 409-414.
  • Möller P, Knappe A, Dulski P, Pekdeger A (2011). Behavior of GdDTPA in simulated bank filtration. Applied Geochemistry 26 (1): 140-149.
  • Möller P, Paces T, Dulsky P, Morteani G (2002). Anthropogenic Gd in surface water, drainage system, and the water supply of the city of Prague, Czech Republic. Environmental Science & Technology 36 (11): 2387-2394.
  • Mongelli G (1997). Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology 140 (1-2): 69-79.
  • Mongelli G, Boni M, Buccione R, Sinisi R (2014). Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities. Ore Geology Reviews 63: 9-21.
  • Murray HH (1991). Overview: Clay mineral application. Applied Clay Science 5 (5-6): 379-395.
  • Murray HH, Keller WD (1993). Kaolins, kaolins, kaolins. In: Murray HH, Bundy WM, Harvey CC (editors). Kaolin Genesis and Utilization. Special Publication No. 1. Boulder, CO, USA: The Clay Minerals Society, pp. 1-24.
  • Mutakyahwa MKD, Ikingura JR, Mruma AH (2003). Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania. Journal of African Earth Sciences 36 (4): 357-369.
  • Nesbitt HW (1979). Mobility and fractionation of rare elements during weathering of a granodiorite. Nature 279: 206-210.
  • Nesbitt HW, Markovics G (1997). Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta 61 (8): 1653-1670.
  • Nesbitt HW, Wilson RE (1992). Recent chemical weathering of basalts. American Journal of Science 292 (10): 740-777.
  • Nozaki Y, Lerche D, Alibo DS, Tsutsumi M (2000). Dissolved indium and rare earth elements in three Japanese rivers and Tokyo bay: evidence for anthropogenic Gd and In. Geochimica et Cosmochimica Acta 64 (23): 3975-3982.
  • Patino LC, Velbel MA, Price JR, Wade JA (2003). Trace elements mobility during sphereroidal weathering of basalts and andesites in Hawaii and Guatemala. Chemical Geology 202 (3- 4): 343-364.
  • Pokrovsky OS, Schott J, Dupré B (2006). Trace element fractionation and transport in boreal rivers and soil pore waters of permafrost-dominated basaltic terrain in Central Siberia. Geochimica et Cosmochimica Acta 70 (13): 3239-3260.
  • Prasad MS, Reid KJ, Murray HH (1991). Kaolin: processing, properties and applications. Applied Clay Science 6 (2): 87-119.
  • Qiu X, Liu Y, Alshameri A, Zhu X, Yan C (2017). Viscosity of kaolin slurries: effects of dispersant and urea-intercalation. Journal of Wuhan University of Technology-Material Science 32 (1): 51-57.
  • Rabiet M, Brissaud F, Seidel JL, Pistre S, Elbaz-Poulichet F (2005). Deciphering the presence of wastewater in a medium-sized Mediterranean catchment using a multitracer approach. Applied Geochemistry 20 (8): 1587-1596.
  • Rabiet M, Brissaud F, Seidel JL, Pistre S, Elbaz-Poulichet F (2009). Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere 75 (8): 1057-1064.
  • Rabiet M, Letouzet M, Hassanzadeh S, Simon S (2014). Transmetallation of Gd-DTPA by Fe3+, Cu2+, and Zn2+ in water: Batch experiments and coagulation–flocculation simulations. Chemosphere 95: 639- 642.
  • Ryan W (1978). Properties of Ceramics Raw Material. 2nd ed. Oxford, UK: Pergamon Press.
  • Sabov Y, Said M, Tesfaye E, Haileyesus W (1985). Bombowoha kaolin and Kenticha Feldspar-Quartz deposits, Sidamo Administrative Region. Addis Ababa, Ethiopia: Geological Survey of Ethiopia.
  • Salvi S, Williams-Jones AE (1996). The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta 60 (11): 1917-1932.
  • Seto M, Akagi T (2008). Chemical condition for the appearance of a negative Ce anomaly in stream waters and groundwaters. Geochemical Journal 42 (4): 371-380.
  • Solodov NA, Semenov EI, Burkov VV (1987). Geological Handbook for Heavy Lithophile Rare Metals. Moscow, Russia: Nedra Press (in Russian).
  • Stocklin J (1977). Structural correlation of the Alpine range between Iran and Central Asia, Memoire Hors - Serie de la Societe Geologique de France 8: 333-353.
  • Strazzera B, Dondi M, Marsigli M (1997). Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science 12 (3): 247-266.
  • Taylor SR, McLennan SM (1985). The Continental Crust: Its Composition and Evolution. 1st ed. Oxford, UK: Blackwell.
  • Uysal IT, Golding SD (2003). Rare earth element fractionation in authigenic illite-smectite from Late Permian clastic rocks, Bowen Basin, Australia: implications for physico-chemical environments of fluids during illitization. Chemical Geology 193 (3-4): 167-179.
  • Vegliò F, Passariello B, Toro L, Marabini AM (1996). Development of a bleaching process for kaolin of industrial interest by oxalic, ascorbic and sulphuric acids: preliminary study using statistical methods of experimental design. Industrial & Engineering Chemistry Research 35 (5): 1680-1687.
  • Verplanck PL, Taylor HE, Nordstrom DK, Barber LB (2005). Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environmental Science & Technology 39 (18): 6923-6929.
  • Wang X, Jiao Y, Du Y, Ling W, Wu L et al. (2013). REE mobility and Ce anomaly in bauxite deposit of WZD area, Northern Guizhou. Journal of Geochemical Exploration 133: 103-117.
  • Zamanian H, Ahmadnejad F, Zarasvandi A (2016). Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran. Chemie der Erde-Geochemistry 76 (1): 13-37.
APA NOURI T, MASOUMI R (2020). Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. , 325 - 346. 10.3906/yer-1906-7
Chicago NOURI Tohid,MASOUMI Rahim Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. (2020): 325 - 346. 10.3906/yer-1906-7
MLA NOURI Tohid,MASOUMI Rahim Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. , 2020, ss.325 - 346. 10.3906/yer-1906-7
AMA NOURI T,MASOUMI R Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. . 2020; 325 - 346. 10.3906/yer-1906-7
Vancouver NOURI T,MASOUMI R Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. . 2020; 325 - 346. 10.3906/yer-1906-7
IEEE NOURI T,MASOUMI R "Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran." , ss.325 - 346, 2020. 10.3906/yer-1906-7
ISNAD NOURI, Tohid - MASOUMI, Rahim. "Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran". (2020), 325-346. https://doi.org/10.3906/yer-1906-7
APA NOURI T, MASOUMI R (2020). Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. Turkish Journal of Earth Sciences, 29(2), 325 - 346. 10.3906/yer-1906-7
Chicago NOURI Tohid,MASOUMI Rahim Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. Turkish Journal of Earth Sciences 29, no.2 (2020): 325 - 346. 10.3906/yer-1906-7
MLA NOURI Tohid,MASOUMI Rahim Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. Turkish Journal of Earth Sciences, vol.29, no.2, 2020, ss.325 - 346. 10.3906/yer-1906-7
AMA NOURI T,MASOUMI R Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. Turkish Journal of Earth Sciences. 2020; 29(2): 325 - 346. 10.3906/yer-1906-7
Vancouver NOURI T,MASOUMI R Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran. Turkish Journal of Earth Sciences. 2020; 29(2): 325 - 346. 10.3906/yer-1906-7
IEEE NOURI T,MASOUMI R "Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran." Turkish Journal of Earth Sciences, 29, ss.325 - 346, 2020. 10.3906/yer-1906-7
ISNAD NOURI, Tohid - MASOUMI, Rahim. "Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran". Turkish Journal of Earth Sciences 29/2 (2020), 325-346. https://doi.org/10.3906/yer-1906-7