Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study

Yıl: 2020 Cilt: 44 Sayı: 1 Sayfa Aralığı: 24 - 38 Metin Dili: İngilizce DOI: 10.3906/fiz-1905-32 İndeks Tarihi: 04-05-2020

Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study

Öz:
The reactive wetting process of a flat solid alumina (α-Al2 O3) ceramic surface by metallic aluminum (Al)nanodroplets with different shapes (spherical, cylindrical, and layer) is studied using parallel molecular dynamics (MD)simulations based on a variable charge MD method, with focuses on heat transfer, mass transfer, and the structure of thereactive region at the Al/α-Al2 O3 interface. We find that the diffusion of oxygen (O) atoms from the substrate into thedroplet leads to the formation of a continuous layer of reaction product at the interface. The diffusion length of oxygenatoms into the spherical Al droplet is found to be ~7.3 Å, and the number density of O atoms at the ~5 top layers ofthe substrate decreases substantially. As a result, the structural correlations near the reactive region differ considerablyfrom those in the solid substrate. Heat generated by the exothermic reactions in the reactive region is transferred toboth the substrate and the droplet. The heat transfer is found to be sensitive to droplet shape.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Aksay IA, Hoye CE, Pask JA. Wetting under chemical equilibrium and non-equilibrium conditions. Journal of Physical Chemistry 1974; 78 (12): 1178-1183. doi: 10.1021/j100605a009
  • [2] Howe JM. Bonding, structure, and properties of metal/ceramic interfaces: part 1 chemical bonding, chemical reaction, and interfacial structure. International Materials Reviews 1993; 38 (5): 233-256. doi: 10.1179/imr.1993.38.5.233
  • [3] Eustathopoulos N. Dynamics of wetting in reactive metal/ ceramic systems. Acta Materialia 1998; 46 (7): 2319-2327. doi: 10.1016/S1359-6454(98)80013-X
  • [4] Chidambaram PR, Edwards GR, Olson DL. A thermodynamic criterion to predict wettability at metal-alumina interfaces. Metallurgical Transactions B 1992; 222: 215-222. doi: 10.1007/BF02651856
  • [5] Tomsia AP, Saiz E, Foppiano S, Cannon RM. Proceedings of the 2nd International Conference on High Temperature Capillarity, Krakow, Poland, 29 June–2 July 1997. Krakow, Poland: Foundry Research Institute, 1998.
  • [6] Chen J, Gu M, Pan F. Reactive wetting of a metal/ceramic system. Journal of Materials Research 2002; 17 (4): 911-917. doi: 10.1557/JMR.2002.0133
  • [7] Feng YB, Zhang X, Yang B, Yang BM, Chen Z. Reactions and microstructures evolution in Al2O2-Al system in vacuum. Asia-Pacific Journal of Chemical Engineering 2018; 13 (1): 1-10. doi : 10.1002/apj.2144
  • [8] Pilania G, Thijsse BJ, Hoagland RG, Lazic I, Valone SM et al. Revisiting the Al/Al2O3 interface: coherent interfaces and misfit accommodation. Scientific Reports 2014; 4: 1-9. doi: 10.1038/srep04485
  • [9] Zeng HD, Cheng XL, Zhang CY, Lu ZP. Responses of core-shell Al/Al2O3 nanoparticles to heating: ReaxFF molecular dynamics simulations. Journal of Physical Chemistry C 2018; 122 (16): 9191-9197. doi: 10.1021/acs.jpcc.8b01088
  • [10] Torrisi L, Scolaro C. Treatment techniques on aluminum to modify the surface wetting properties. Acta Physica Plononica A 2015; 128: 48-53. doi: 10.12693/APhysPolA.128.48
  • [11] Zhang P, Fang J, Fu R, Gu X, Fei M. Bonding of Al to Al2O3 via Al-Cu eutectic method. Materials and Design 2015; 87: 619-624. doi: 10.1016/j.matdes.2015.08.065
  • [12] Sobczak N, Asthana R, Radziwill W, Nowak R, Kudyba A. The role of aluminum oxidation in the wetting-bonding relationship of Al/oxide couples. Archives of Metallurgy and Materials 2007; 52: 55-65.
  • [13] Bao S, Tang K, Kvithyld A, Tangstad M, Engh TA. Wettability of aluminum on alumina. Metallurgical and Materials Transactions B 2011; 42: 1358-1366. doi: 10.1007/s11663-011-9544-z.
  • [14] Oh SY, Cornie JA, Russell KC. Wetting of ceramic particulates with liquid aluminum alloys: Part II. Study of wettability. Metallurgical Transactions A 1989; 20 (3): 533-541. doi: 10.1007/BF02653933
  • [15] George L, Kaplan WD. Oxygen induced interfacial phenomena during wetting of alumina by liquid aluminium. Acta Materialia 2002; 50 (1): 75-88. doi: 10.1016/S1359-6454(01)00333-0
  • [16] de Gennes PG. Wetting: statics and dynamics. Review of Modern Physics 1985; 57 (3): 827-863. doi : 10.1103/RevModPhys.57.827
  • [17] Landau LD, Lifshitz EM. Statistical Physics. 3rd. ed. New York, NY, USA: Pergamon Press, 1989.
  • [18] Laurent V, Chatain D, Chatillon C, Eustathopoulos N. Wettability of mono crystalline alumina by aluminium between its melting point and 1273 K. Acta Metallurgica 1988; 36 (7): 1797-1803. doi : 10.1016/0001-6160(88)90248- 9
  • [19] Carnahan RD, Johnston TL, Li CH. Some observations on the wetting of Al2O3 by aluminum. Journal of the American Ceramic Society 1958; 41 (9): 343-347. doi: 10.1111/j.1151-2916.1958.tb12931.x
  • [20] Swiler TP, Loehman RE. Molecular dynamics simulations of reactive wetting in metal-ceramic systems. Acta Materialia 2000; 48: 4419-4424. doi: 10.1016/S1359-6454(00)00228-7
  • [21] Ruhle M, Evans AG. Structure and chemistry of metal/ceramic interfaces. Materials Science and Engineering A 1989; 107: 187-197. doi: 10.1016/0921-5093(89)90387-0
  • [22] Vasiliev I, Chelikowsky JR, Martin RM. Surface oxidation effects on the optical properties of silicon nanocrystals. Physical Review B 2002; 65 (12): 121302-12109. doi: 10.1103/PhysRevB.65.121302
  • [23] Streitz FH, Mintmire JW. Electrostatic potentials for metal-oxide surfaces and interfaces. Physical Review B 1994; 50 (16): 11996-12003. doi: 10.1103/PhysRevB.50.11996
  • [24] Brenner DW. The art and science of an analytic potential. Physica Status Solidi B 2000; 217: 23-40. doi: 10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-N
  • [25] Bazant MZ, Kaxiras E, Justo JF. Environment-dependent interatomic potential for bulk silicon. Physical Review B 1997; 56 (14): 8542-8552. doi: 10.1103/PhysRevB.56.8542
  • [26] Campbell T, Kalia RK, Nakano A, Vashishta P. Dynamics of oxidation of aluminum nanoclusters using variable charge molecular dynamics simulations on parallel computers. Physical Review Letters 1999; 82 (24): 4866-4869. doi: 10.1103/PhysRevLett.82.4866
  • [27] Iczkowski RP, Margrave JL. Electronegativity. Journal of the American Chemical Society 1961; 83 (17): 3547-3551. doi: 10.1021/ja01478a001
  • [28] Rappe AK, Goddard WA. Charge equilibration for molecular dynamics simulations. Journal of Physical Chemistry 1991; 95 (8): 3358-3363. doi: 10.1021/j100161a070
  • [29] Nakano A, Kalia RK, Vashishta P. Scalable molecular-dynamics, visualization, and data management algorithms for materials simulations. IEEE Computing in Science and Engineering 1999; 1 (5): 39-47. doi: 10.1109/5992.790586
  • [30] Dorre E, Hubner H. Alumina Processing, Properties, and Applications. New York, NY, USA: Springer-Verlag, 1984.
  • [31] Allen MP, Tildesley DJ. Computer Simulation of Liquids. New York, NY, USA: Oxford University Press, 1987.
  • [32] Vashista P, Kalia RJ, Nakano A, Li W, Ebbsjo I. Amorphous Insulator and Semiconductors. Amsterdam, the Netherlands: Kluwer Academic Publishers, 1997.
  • [33] Minkowycz WJ, Sparrow EM. Advances in Numerical Heat Transfer. New York, NY, USA: Taylor & Francis, 2000.
  • [34] Tigli A, Cagin T. A case study on metal-ceramic interfaces: wetting of alumina by molten aluminum. Materials Science Forum 2018; 915: 185-189. doi: 10.4028/www.scientific.net/MSF.915.185
  • [35] Shen P, Zhang L, Wang Y. Influence of oxidation on contact angle between liquid aluminum and Al2O3. Williams Eds Light Metals 2016; 827-832. doi: 10.1007/978-3-319-48251-4_140
  • [36] Komolafe B, Medraj M. Progress in wettability study of reactive systems. Journal of Metallurgy 2014; 2014: 1-14. doi: 10.1155/2014/387046
  • [37] Lee SB, Kim YM. Direct observation of in-plane ordering in the liquid at a liquid Al/α-Al2O3(1102) interface. Acta Materialia 2011; 59: 1383-1388. doi: 10.1016/j.actamat.2010.10.069
  • [38] Ishizawa N, Miyata T, Minato I, Marumo F, Iwai S. A structural investigation of α-Al2O3at 2170 K. Acta Crystallographica B 1980; 36: 228-230. doi: 10.1107/S0567740880002981
  • [39] Wang DJ, Wu ST. The influence of oxidation on the wettability of aluminum on sapphire. Acta Metallurgica et Materialia 1994; 42 (12): 4029-4034. doi: 10.1016/0956-7151(94)90180-5
APA aral g (2020). Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. , 24 - 38. 10.3906/fiz-1905-32
Chicago aral gurcan Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. (2020): 24 - 38. 10.3906/fiz-1905-32
MLA aral gurcan Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. , 2020, ss.24 - 38. 10.3906/fiz-1905-32
AMA aral g Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. . 2020; 24 - 38. 10.3906/fiz-1905-32
Vancouver aral g Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. . 2020; 24 - 38. 10.3906/fiz-1905-32
IEEE aral g "Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study." , ss.24 - 38, 2020. 10.3906/fiz-1905-32
ISNAD aral, gurcan. "Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study". (2020), 24-38. https://doi.org/10.3906/fiz-1905-32
APA aral g (2020). Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. Turkish Journal of Physics, 44(1), 24 - 38. 10.3906/fiz-1905-32
Chicago aral gurcan Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. Turkish Journal of Physics 44, no.1 (2020): 24 - 38. 10.3906/fiz-1905-32
MLA aral gurcan Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. Turkish Journal of Physics, vol.44, no.1, 2020, ss.24 - 38. 10.3906/fiz-1905-32
AMA aral g Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. Turkish Journal of Physics. 2020; 44(1): 24 - 38. 10.3906/fiz-1905-32
Vancouver aral g Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study. Turkish Journal of Physics. 2020; 44(1): 24 - 38. 10.3906/fiz-1905-32
IEEE aral g "Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study." Turkish Journal of Physics, 44, ss.24 - 38, 2020. 10.3906/fiz-1905-32
ISNAD aral, gurcan. "Reactive wetting of metallic/ceramic (Al/α-Al2 O3 ) systems: a parallel molecular dynamics simulation study". Turkish Journal of Physics 44/1 (2020), 24-38. https://doi.org/10.3906/fiz-1905-32