Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers

Yıl: 2020 Cilt: 44 Sayı: 1 Sayfa Aralığı: 49 - 56 Metin Dili: İngilizce DOI: 10.3906/fiz-1908-6 İndeks Tarihi: 04-05-2020

Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers

Öz:
Cladding light strippers are essential components in high-power fiber lasers used for removal of unwantedcladding light that can distort the beam quality or even damage the whole fiber laser system. In this study, an AtomicLayer Deposition system was used for the first time to prepare the cladding light stripper devices using a 40 nm thickzirconia layer grown on optical fiber. The thickness of the zirconia coating was confirmed using the Scanning ElectronMicroscopy (SEM) and the Ellipsometry techniques. The elemental analysis was also performed using the wavelengthdispersive X-ray spectroscopy technique. The Raman spectroscopy and XRD data confirm the structure of the atomiclayer deposition-grown zirconia thin films to be predominantly amorphous. The cladding light stripper devices formedusing the zirconia thin films with the lengths of 8.5 and 15.5 cm were able to strip approximately 30% (~1.5 dB) and40% (~2.3 dB) of the unwanted cladding light.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Tünnermann A, Schreiber T, Röser F, Liem A, Höfer S et al. The renaissance and bright future of fibre lasers. Journal of Physics B: Atomic, Molecular and Optical Physics 2005; 38: S681–93. https://doi.org/10.1088/0953- 4075/38/9/016
  • [2] Boyd K, Simakov N, Hemming A, Daniel J, Swain R et al. CO_2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers. Applied Optics 2016; 55: 2915. https://doi.org/10.1364/AO.55.002915
  • [3] Yan P, Sun J, Huang Y, Li D, Wang X et al. Kilowatt-level cladding light stripper for high-power fiber laser. Applied Optics 2017; 56: 1935. https://doi.org/10.1364/AO.56.001935
  • [4] Guo W, Chen Z, Zhou H, Li J, Hou J. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers. IEEE Photonics Journal 2014; 6: 1–6. https://doi.org/10.1109/JPHOT.2014.2320736
  • [5] Babazadeh A, Nasirabad RR, Norouzey A, Hejaz K, Poozesh R et al. Robust cladding light stripper for high-power fiber lasers using soft metals. Applied Optics 2014; 53: 2611. https://doi.org/10.1364/AO.53.002611
  • [6] Bansal L, Supradeepa VR, Kremp T, Sullivan S, Headley C. High power cladding mode stripper. In: Shaw LB, editor. Proc. of SPIE: Fiber Lasers XII: Technology, Systems, and Applications, vol. 9344, 2015, p. 93440F. https://doi.org/10.1117/12.2079181
  • [7] Boehme S, Hirte K, Fabian S, Hupel C, Schreiber T et al. CO2 -laser-based coating process for high power fiber application. SPIE Photonics West 2014-LASE: Lasers and Sources 2014; 8968: 89680Z. https://doi.org/10.1117/12.2036357
  • [8] Kliner A, Hou K-C, Plötner M, Hupel C, Stelzner T et al. Fabrication and evaluation of a 500 W cladding-light stripper. Advanced Solid-State Lasers Congress 2013; 8616: AM2A.3. https://doi.org/10.1364/ASSL.2013.AM2A.3
  • [9] Yin L, Yan M, Han Z, Wang H, Shen H et al. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies. Optics Express 2017; 25: 8760. https://doi.org/10.1364/OE.25.008760
  • [10] Wan Y, Bullock J, Hettick M, Xu Z, Yan D et al. Zirconium oxide surface passivation of crystalline silicon. Applied Physics Letters 2018; 112: 201604. https://doi.org/10.1063/1.5032226
  • [11] Gupta R, Vaid R. Effect of Post Deposition Annealing on ALD-ZrO2/SiON Gate Stacks for Advanced CMOS Technology. ECS Transactions 2016; 75: 67–73. https://doi.org/10.1149/07517.0067ecst.
  • [12] Gambardella A, Berni M, Russo A, Bianchi M. A comparative study of the growth dynamics of zirconia thin films deposited by ionized jet deposition onto different substrates. Surface and Coatings Technology 2018; 337: 306–12. https://doi.org/10.1016/j.surfcoat.2018.01.026
  • [13] Ciuparu D, Ensuque A, Shafeev G, Bozon-Verduraz F. Synthesis and apparent bandgap of nanophase zirconia. Journal of Materials Science Letters 2000; 19: 931–3. https://doi.org/10.1023/A
  • [14] Ramola RC, Rawat M, Joshi K, Das A, Gautam SK et al. Study of phase transformation induced by electronic excitation in pure and yttrium doped ZrO 2 thin films. Materials Research Express 2017; 4. https://doi.org/10.1088/2053- 1591/aa8671
  • [15] Sayan S, Nguyen NV, Ehrstein J, Emge T, Garfunkel E et al. Structural, electronic, and dielectric properties of ultrathin zirconia films on silicon. Applied Physics Letters 2005; 86: 152902. https://doi.org/10.1063/1.1864235
  • [16] Paschotta R, Nilsson J, Tropper AC, Hanna DC. Ytterbium-Doped fiber ampli?ers. IEEE Journal of Quantum Electronics 1997; 33: 1049–56. https://doi.org/10.1109/3.594865
  • [17] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers. Nature Photonics 2013; 7: 861–7. https://doi.org/10.1038/nphoton.2013.273
  • [18] Creeden D, Johnson BR, Rines GA, Setzler SD. High power resonant pumping of Tm-doped fiber amplifiers in coreand cladding-pumped configurations. Optics Express 2014; 22. https://doi.org/10.1364/OE.22.029067
  • [19] Simakov N, Li Z, Jung Y, Daniel JMO, Barua P et al. High gain holmium-doped fibre amplifiers. Optics Express 2016; 24: 13946. https://doi.org/10.1364/oe.24.013946
  • [20] Clarke DR, Phillpot SR. Thermal barrier coating materials. Materials Today 2005; 8: 22–9. https://doi.org/10.1016/S1369-7021(05)70934-2
APA KARATUTLU A (2020). Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. , 49 - 56. 10.3906/fiz-1908-6
Chicago KARATUTLU Ali Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. (2020): 49 - 56. 10.3906/fiz-1908-6
MLA KARATUTLU Ali Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. , 2020, ss.49 - 56. 10.3906/fiz-1908-6
AMA KARATUTLU A Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. . 2020; 49 - 56. 10.3906/fiz-1908-6
Vancouver KARATUTLU A Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. . 2020; 49 - 56. 10.3906/fiz-1908-6
IEEE KARATUTLU A "Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers." , ss.49 - 56, 2020. 10.3906/fiz-1908-6
ISNAD KARATUTLU, Ali. "Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers". (2020), 49-56. https://doi.org/10.3906/fiz-1908-6
APA KARATUTLU A (2020). Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. Turkish Journal of Physics, 44(1), 49 - 56. 10.3906/fiz-1908-6
Chicago KARATUTLU Ali Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. Turkish Journal of Physics 44, no.1 (2020): 49 - 56. 10.3906/fiz-1908-6
MLA KARATUTLU Ali Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. Turkish Journal of Physics, vol.44, no.1, 2020, ss.49 - 56. 10.3906/fiz-1908-6
AMA KARATUTLU A Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. Turkish Journal of Physics. 2020; 44(1): 49 - 56. 10.3906/fiz-1908-6
Vancouver KARATUTLU A Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers. Turkish Journal of Physics. 2020; 44(1): 49 - 56. 10.3906/fiz-1908-6
IEEE KARATUTLU A "Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers." Turkish Journal of Physics, 44, ss.49 - 56, 2020. 10.3906/fiz-1908-6
ISNAD KARATUTLU, Ali. "Atomic layer deposition of zirconium oxide thin film on an optical fiber for cladding light strippers". Turkish Journal of Physics 44/1 (2020), 49-56. https://doi.org/10.3906/fiz-1908-6