Prediction of standard enthalpies of formation of boron nitride nanocones

Yıl: 2020 Cilt: 44 Sayı: 2 Sayfa Aralığı: 174 - 194 Metin Dili: İngilizce DOI: 10.3906/fiz-1908-7 İndeks Tarihi: 04-05-2020

Prediction of standard enthalpies of formation of boron nitride nanocones

Öz:
Prediction of the standard enthalpy of formation (ΔfH0298) of boron nitride nanocone (BNNCs) structureswith disclination angles 60°, 120°, and 180°is recommended to be performed by the isodesmic reaction approach. NH3 ,BH3 , and N2 H4 were selected as key reference compounds. In order to calculate ΔfH0298 of nanocones, we must firstcalculate the enthalpies of nanocone rings at their apexes. For this purpose, ΔfH0298 values of 40 different structures, suchas boron, nitrogen, and hydrogen compounds, have been calculated by combining Gaussian-4 (G4) theory calculationswith the isodesmic and other balanced reactions approach. At each stage of the calculations, the previously estimatedenthalpies of formation of nanocones were used as reference points for new molecules in the isodesmic and other balancedreactions. The results of enthalpies of formation of reference compounds were then used as reference values to estimatethe enthalpy of formation of rings of BNNCs at their apexes. Finally, enthalpies of formation of BNNCs with disclinationangles of 60°, 120°, and 180°and cone heights of 1–5 Å, 3–7 Å, and 4–8 Å were calculated. The results show that thereactions are highly exothermic. An increase in cone height causes the enthalpy of formation of boron nitride nanoconestructures to become more negative.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992; 356: 776-778. doi: 10.1038/356776a0
  • [2] Zhi C, Bando Y, Tang C, Golberg D. Electronic structure of boron nitride cone-shaped nanostructures, Physical Review B 2005; 72: 245419. doi: 10.1103/PhysRevB.72.245419
  • [3] Yu SS, Zheng WT. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2010; 2: 1069. doi: 10.1039/C0NR00002G
  • [4] Hsieh JY, Chen C, Chen JL, Chen CI, Hwang CC. The nanoindentation of a copper substrate by single-walled carbon nanocone tips: a molecular dynamics study. Nanotechnology 2009; 20: 095709. doi: 10.1088/0957-4484/20/9/095709
  • [5] Chen IC, Chen LH, Gapin A, Jin S, Yuan L et al. Iron–platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 2008; 19: 075501. doi: 10.1088/0957-4484/19/7/075501
  • [6] Sripirom J, Noor S, Köhler U, Schulte A. Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis. Carbon 2011; 49: 2402-2412. doi: 10.1016/j.carbon.2011.02.007
  • [7] Liao ML. A study on hydrogen adsorption behaviors of open-tip carbon nanocones. Journal of Nanoparticle Research 2012; 14: 837. doi: 10.1007/s11051-012-0837-1
  • [8] Adisa OO, Cox BJ, Hill JM. Open carbon nanocones as candidates for gas storage. Journal of Physical Chemistry C 2011; 115: 24528-24533. doi: 10.1021/jp2069094
  • [9] Majidi R, Tabrizi KG. Study of neon adsorption on carbon nanocones using molecular dynamics simulation. Physica B: Condensed Matter 2010; 405: 2144-2148. doi: 10.1016/j.physb.2010.01.122
  • [10] Krungleviciute V, Calbi MM, Wagner JA, Migone AD, Yudasaka M et al. Probing the structure of carbon nanohorn aggregates by adsorbing gases of different sizes. Journal of Physical Chemistry C 2008; 112: 5742-5746. doi: 10.1021/jp710524q
  • [11] Golberg D, Bando Y, Kurashima K, Sato T. Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scripta Materialia 2001; 44: 1565. doi: 10.1016/S1359-6462(01)00724-2
  • [12] Suryavanshi AP, Yu MF, Wen J, Tang C, Bando Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Applied Physics Letters 2004; 84: 2527-2529. doi: 10.1063/1.1691189
  • [13] Azevedo S, Mazzoni MS, Chacham H, Nunes R. Electron states in boron nitride nanocones. Applied Physics Letters 2003; 82: 2323. doi: 10.1063/1.1565701
  • [14] Ge M, Sattler K. Observation of fullerene cones. Chemical Physics Letters 1994; 220: 192-196. doi: 10.1016/0009- 2614(94)00167-7
  • [15] Bourgeois L, Bando Y, Shinozaki S, Kurashima K, Sato T. Boron nitride cones: structure determination by transmission electron microscopy. Acta Crystallographica Section A: Foundations of Crystallography 1999; 55: 168-177. doi: 10.1107/S0108767398008642
  • [16] Bourgeois L, Bando Y, Han W, Sato T. Structure of boron nitride nanoscale cones: ordered stacking of 240 and 300 disclinations. Physical Review B 2000; 61: 7686. doi: 10.1103/PhysRevB.61.7686
  • [17] Terauchi M, Tanaka M, Suzuki K, Ogino A, Kimura K. Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chemical Physics Letters 2000; 324: 359-365. doi: 10.1016/S0009-2614(00)00637-0
  • [18] Zhi C, Bando Y, Tang C, Golberg D, Xie R et al. Large-scale fabrication of boron nitride nanohorn. Applied Physics Letters 2005; 87: 063107. doi: 10.1063/1.2009056
  • [19] Han W, Bourgeois L, Bando Y, Kurashima K, Sato T. Formation and structure of boron nitride conical nanotubes. Applied Physics A: Materials Science & Processing 2000; 71: 83-85. doi: 10.1007/PL00021096
  • [20] Pedreira D, Azevedo S, Machado M. Electronic properties of boron nitride nanocones under the influence of parallel and perpendicular external electric fields. Physical Review B 2008; 78: 085427. doi: 10.1103/PhysRevB.78.085427
  • [21] Guedes J, Azevedo S, Machado M. Formation energy and geometry of vacancies at BN and B x C y N z nanocones. European Physical Journal B-Condensed Matter and Complex Systems 2011; 80: 127-135. doi: 10.1140/epjb/e2011- 10951-2
  • [22] Machado M, Piquini P, Mota R. Energetics and electronic properties of BN nanocones with pentagonal rings at their apexes. European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 2003; 23: 91-93. doi: 10.1140/epjd/e2003-00040-x
  • [23] Tian Y, Wei R, Eichhorn V, Fatikow S, Shirinzadeh B et al. Mechanical properties of boron nitride nanocones. Journal of Applied Physics 2012; 111: 104316. doi: 10.1063/1.4721651
  • [24] Azevedo S, de Brito Mota F. Influence of the electric field on BN conical structures. International Journal of Quantum Chemistry 2006; 106: 1907-1911. doi: 10.1002/qua.20934
  • [25] Machado M, Piquini P, Mota R. Charge distributions in BN nanocones: electric field and tip termination effects. Chemical Physics Letters 2004; 392: 428-432. doi: 10.1016/j.cplett.2004.05.088
  • [26] Fabian WM. Accurate thermochemistry from quantum chemical calculations. Monatshefte für Chemie/Chemical Monthly 2008; 139: 309-318. doi: 10.1007/s00706-007-0798-8
  • [27] Ghahremanpour MM, van Maaren PJ, Ditz JC, Lindh R, van der Spoel D. Large-scale calculations of gas phase thermochemistry: enthalpy of formation, standard entropy, and heat capacity. Journal of Chemical Physics 2016; 145: 114305. doi: 10.1063/1.4962627
  • [28] Sopaci SB, Nazir H, Emir E, Atakol O, Oz S. Thermal kinetic analysis, theoretical thermodynamic calculations and antimicrobial activity of three new energetic materials. Journal of Thermal Analysis and Calorimetry 2018; 131: 3105-3120. doi: 10.1007/s10973-017-6708-3
  • [29] İnal EK, Acar N, Sopaci SB, Yildiz C, Nazir H et al. The thermal investigation, thermokinetic analysis and antimicrobial activity of two new energetic materials obtained from nucleophilic substitution of nitro pyridine ring. Journal of Natural and Applied Sciences 2018; 22: 1262-1275. doi: 10.19113/sdufenbed.431116
  • [30] Curtiss LA, Redfern PC, Raghavachari K. Gn theory. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011; 1: 810-825. doi: 10.1002/wcms.59
  • [31] Curtiss LA, Redfern PC, Raghavachari K. Gaussian-4 theory. Journal of Chemical Physics 2007; 126: 084108. doi: 10.1063/1.2436888
  • [32] Dorofeeva OV, Ryzhova ON, Suntsova MA. Accurate prediction of enthalpies of formation of organic azides by combining G4 theory calculations with an isodesmic reaction scheme. Journal of Physical Chemistry A 2013; 117: 6835-6845. doi: 10.1021/jp404484q
  • [33] He X, Zhang J, Gao H. Theoretical thermochemistry: enthalpies of formation of a set of nitrogen-containing compounds. International Journal of Quantum Chemistry 2012; 112: 1688-1700. doi: 10.1002/qua.23163
  • [34] Wheeler SE. Homodesmotic reactions for thermochemistry. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012; 2: 204-220. doi: 10.1002/wcms.72
  • [35] Li Y, Tian Y, Yang C, Cai K, Zhang D. Torsional properties of boron nitride nanocones with different cone heights, disclination angles and simulation temperatures. Nano 2015; 10: 1550097. doi: 10.1142/S1793292015500976
  • [36] Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M et al. Gaussian. Wallingford, CT, USA: Gaussian Inc., 2009.
  • [37] Chase MW. NIST-JANAF Thermochemical Tables, Fourth Edition, Monograph 9 (Part I and Part II). Washington, DC, USA: NIST, 1998.
  • [38] Dixon DA, Gutowski M. Thermodynamic properties of molecular borane amines and the [BH4-][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory. Journal of Physical Chemistry A 2005; 109: 5129-5135. doi: 10.1021/jp0445627
  • [39] Matus MH, Anderson KD, Camaioni DM, Autrey ST, Dixon DA. Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: B x N x H y, x= 2, 3. Journal of Physical Chemistry A 2007; 111: 4411-4421. doi: 10.1021/jp070931y
APA SHOJAIE F (2020). Prediction of standard enthalpies of formation of boron nitride nanocones. , 174 - 194. 10.3906/fiz-1908-7
Chicago SHOJAIE Fahimeh Prediction of standard enthalpies of formation of boron nitride nanocones. (2020): 174 - 194. 10.3906/fiz-1908-7
MLA SHOJAIE Fahimeh Prediction of standard enthalpies of formation of boron nitride nanocones. , 2020, ss.174 - 194. 10.3906/fiz-1908-7
AMA SHOJAIE F Prediction of standard enthalpies of formation of boron nitride nanocones. . 2020; 174 - 194. 10.3906/fiz-1908-7
Vancouver SHOJAIE F Prediction of standard enthalpies of formation of boron nitride nanocones. . 2020; 174 - 194. 10.3906/fiz-1908-7
IEEE SHOJAIE F "Prediction of standard enthalpies of formation of boron nitride nanocones." , ss.174 - 194, 2020. 10.3906/fiz-1908-7
ISNAD SHOJAIE, Fahimeh. "Prediction of standard enthalpies of formation of boron nitride nanocones". (2020), 174-194. https://doi.org/10.3906/fiz-1908-7
APA SHOJAIE F (2020). Prediction of standard enthalpies of formation of boron nitride nanocones. Turkish Journal of Physics, 44(2), 174 - 194. 10.3906/fiz-1908-7
Chicago SHOJAIE Fahimeh Prediction of standard enthalpies of formation of boron nitride nanocones. Turkish Journal of Physics 44, no.2 (2020): 174 - 194. 10.3906/fiz-1908-7
MLA SHOJAIE Fahimeh Prediction of standard enthalpies of formation of boron nitride nanocones. Turkish Journal of Physics, vol.44, no.2, 2020, ss.174 - 194. 10.3906/fiz-1908-7
AMA SHOJAIE F Prediction of standard enthalpies of formation of boron nitride nanocones. Turkish Journal of Physics. 2020; 44(2): 174 - 194. 10.3906/fiz-1908-7
Vancouver SHOJAIE F Prediction of standard enthalpies of formation of boron nitride nanocones. Turkish Journal of Physics. 2020; 44(2): 174 - 194. 10.3906/fiz-1908-7
IEEE SHOJAIE F "Prediction of standard enthalpies of formation of boron nitride nanocones." Turkish Journal of Physics, 44, ss.174 - 194, 2020. 10.3906/fiz-1908-7
ISNAD SHOJAIE, Fahimeh. "Prediction of standard enthalpies of formation of boron nitride nanocones". Turkish Journal of Physics 44/2 (2020), 174-194. https://doi.org/10.3906/fiz-1908-7