Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure

Yıl: 2020 Cilt: 44 Sayı: 1 Sayfa Aralığı: 85 - 94 Metin Dili: İngilizce DOI: 10.3906/fiz-1907-21 İndeks Tarihi: 04-05-2020

Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure

Öz:
In order to enhance the capacitance of the Al/p-Si metal-semiconductor structure, the Alq3 thin film wascoated between these two layers using the spin coating technique as the interlayer. The electrical conductivity, realand imaginary parts of electric modulus, dielectric loss and dielectric constant parameters were examined at the roomtemperature by the help of admittance measurements in the 100 kHz to 1 MHz frequency range. The effect of frequencyon the dielectric constant and dielectric loss values is negligible at the negative voltage values, up to about 0.8 V, andthese values rapidly ascended after 0.8 V. The function of electrical modulus complex has been examined from the pointof permittivity and impedance in order to clutch the contribution of the particle border on the relaxation mechanismof the materials. It is established that the examined dielectric parameters strongly correlated with the voltage andfrequency. As a result, the changes in the dielectric parameters and electrical modulus due to the varying frequency weredescribed as the results of relaxation process, polarization and surface conditions. Furthermore, it could be stated thatthe Alq3 material used in the interfacial layer is a useful material which could be used in addition to the conventionalmaterials.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Orak I, Kocyigit A, Turut A. The surface morphology properties and respond illumination impact of ZnO/n-Si photodiode by prepared atomic layer deposition technique. Journal of Alloys and Compounds 2017; 691: 873-879. doi: 10.1016/j.jallcom.2016.08.295
  • [2] Sung MJ, Kim K, Kwon SK, Kim YH, Chung DS. Phenanthro [110, 9, 8-cdefg] carbazole-thiophene, donor–donor copolymer for narrow band green-selective organic photodiode. The Journal of Physical Chemistry C 2017; 121: 15931-15936. doi: 10.1021/acs.jpcc.7b04793
  • [3] Al-Hazmi FE, Yakuphanoglu F. Photoconducting and photovoltaic properties of ZnO: TiO2 composite/p-silicon heterojunction photodiode. Silicon 2018; 10: 781-787. doi: 10.1007/s12633-016-9530-9
  • [4] Mohanraj K, Balasubramanian D, Chandrasekaran J, Babu B. Structural, morphological, optical and electrical properties of nail-shaped CdO nanoparticles synthesized by chemical route assisted microwave irradiation method for P–N junction diode application. Journal of Materials Science: Materials in Electronics 2017; 28: 7749-7759. doi: 10.1007/s10854-017-6470-0
  • [5] Hanafy TA. Dielectric relaxation and alternating-current conductivity of gadolinium-doped poly (vinyl alcohol). Journal of Applied Polymer Science 2008; 108: 2540-2549. doi: 10.1002/app.27567
  • [6] Karabulut A. Dielectric characterization of Si-based heterojunction with TiO2 interfacial layer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2018; 8: 119-129. doi:10.21597/jist.418869
  • [7] Gyanan MS, Kumar A. Tunable dielectric properties of TiO2 thin film based MOS systems for application in microelectronics. Superlattices and Microstructures 2016; 100: 876- 885. doi: 10.1016/j.spmi.2016.10.054
  • [8] Robertson J, Wallace RM. High-K materials and metal gates for CMOS applications. Materials Science and Engineering: R: Reports 2015; 88: 1-41. doi: 10.1016/j.mser.2014.11.001
  • [9] Cherif A, Jomni S, Mliki N, Beji L. Electrical and dielectric characteristics of Al/Dy2 O3 /p-Si heterostructure. Physica B:Condensed Matter 2013; 429: 79-84. doi: 10.1016/j.physb.2013.07.026
  • [10] Hacioglu SO, Unlu NA, Aktas E, Hizalan G, Yildiz ED et al. A triazoloquinoxaline and benzodithiophene bearing low band gap copolymer for electrochromic and organic photovoltaic applications. Synthetic Metals 2017; 228: 111-119. doi:10.1016/j.synthmet.2017.04.017
  • [11] Ali HAM, El-Zaidia EFM. Investigation of structural, electrical conductivity and dielectric properties of bulk Azure A chloride. The European Physical Journal Plus 2019; 134 (5): 188. doi: 10.1140/epjp/i2019-12559-4
  • [12] Karabulut A, Orak İ, Türüt A. The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes. Solid-State Electronics 2018; 144: 39-48. doi: 10.1016/j.sse.2018.02.016
  • [13] Reddy MSP, Sreenu K, Reddy VR, Park C. Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone(PVP) polymer interlayer. Journal of Materials Science: Materials in Electronics 2007; 28 (6): 4847-4855. doi: 10.1007/s10854-016-6131-8
  • [14] Mohan VM, Weiliang Q, Jie S, Wen C. Electrical properties of poly (vinyl alcohol)(PVA) based on LiFePO4 complex polymer electrolyte films. Journal of Polymer Research 17 2010; 1: 143-150. doi:10.1007/s10965-009-9300-0
  • [15] Tataroğlu A, Ahmedova C, Barim G, Al-Sehemi AG, Karabulut A et al. Electronic and optoelectronic properties of Al/coumarin doped Pr2 Se3 –Tl2;Se/p-Si devices. Journal of Materials Science: Materials in Electronics 2018; 29 (15): 12561-12572. doi: 10.1007/s10854-018-9372-x
  • [16] Esaki Y, Matsushima T, Adachi C. Dependence of the amorphous structures and photoluminescence properties of tris (8-hydroxyquinolinato) aluminum films on vacuum deposition conditions. Organic Electronics 2019; 67: 237-241. doi: 10.1016/j.orgel.2019.01.032
  • [17] Comandè F, Ansermet JP. Pulsed magnetic resonance of Alq3 OLED detected by electroluminescence. Synthetic Metals 2013; 173: 40-42. doi:10.1016/j.synthmet.2012.12.037
  • [18] Ahn JH, Lee JU, Kim TW. Impedance characteristics of ITO/Alq3 /Al organic light-emitting diodes depending on temperature. Current Applied Physics 2007; 7 (5): 509-512. doi: 10.1016/j.cap.2006.10.012
  • [19] Berleb S, Mückl AG, Brütting W, Schwoerer M. Temperature dependent device characteristics of organic lightemitting devices. Synthetic Metals 2000; 111: 341-344. doi: 10.1016/S0379-6779(99)00361-6
  • [20] Tang CW, VanSlyke SA, Chen CH. Electroluminescence of doped organic thin films. Journal of Applied Physics 1989; 65 (9): 3610-3616. doi: 10.1063/1.343409
  • [21] Gu J, Yin B, Fu S, Jin C, Liu X et al. Controlled Self-Assembly of Low-Dimensional Alq3 Nanostructures from 1D Nanowires to 2D Plates via Intermolecular Interactions. Electronic Materials Letters 2018; 14 (2): 181-186. doi: 10.1007/s13391-018-0013-6
  • [22] Farag AAM, Gunduz B, Yakuphanoglu F, Farooq WA. Controlling of electrical characteristics of Al/p-Si Schottky diode by tris (8-hydroxyquinolinato) aluminum organic film. Synthetic Metals 2010; 160 (23-24): 2559-2563. doi:10.1016/j.synthmet.2010.10.005
  • [23] Gu J, Yin B, Fu S, Feng M, Zhang Z et al. Surface tension driven aggregation of organic nanowires via lab in a droplet. Nanoscale 2018; 10 (23): 11006-11012. doi: 10.1039/c8nr02592d
  • [24] Riminucci A, Graziosi P, Calbucci M, Cecchini R, Prezioso M et al. Low intrinsic carrier density LSMO/Alq3 /AlOx /Co organic spintronic devices. Applied Physics Letters 2018; 112 (14): 142401. doi: 10.1063/1.5006387
  • [25] Sevgili Ö, Lafzi F, Karabulut A, Orak İ, Bayındır S. The synthesis of new bola-amphiphile TPEs and the comparison of current transformer mechanism and structural properties for Al/Bis (HCTA)-TPE/p-Si and Al/Bis (HCOA)-TPE/p-Si heterojunctions. Composites Part B: Engineering 2019; 172: 226-233. doi: 10.1016/j.compositesb.2019.05.020
  • [26] Farooq WA, Elgazzar E, Dere A, Dayan O, Serbetci Z et al. Photoelectrical characteristics of novel Ru (II) complexes based photodiode. Journal of Materials Science: Materials in Electronics 2019; 30 (6): 5516-5525.
  • [27] Karabulut A, Orak İ, CanlıS, Yıldırım N, Türüt A. Temperature-dependent electrical characteristics of Alq3 /p-Si heterojunction. Physica B: Condensed Matter 2018; 550: 68-74. doi: 10.1016/j.physb.2018.08.029
  • [28] Marıl E, Tan SO, Altındal Ş, Uslu I. evaluation of electric and dielectric properties of Metal–Semiconductor structures with 2% GC-doped-(Ca3 Co4 Ga0.001 Ox) interlayer. IEEE Transactions on Electron Devices 2018; 65 (9): 3901-3908. doi: 10.1109/TED.2018.2859907
  • [29] Sevgili Ö, Tasçioglu I, Boughdachi S, Azizian-Kalandaragh Y, Altindal S. Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Physica B Condensed Matter 209; 566: 125-135. doi: 10.1016/j.physb.2019.04.029
  • [30] Demirezen S, Tanrıkulu EE, Altındal Ş. The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors. Indian Journal of Physics 2019; 93 (6): 739-747. doi: 10.1007/s12648-018-1355-5
  • [31] Mehdizadeh M, Microwave/RF applicators and probes: for material heating, sensing, and plasma generation. William Andrew,USA:Elsevier, 2015.
  • [32] Karabulut A, Türüt A, Karataş Ş. The electrical and dielectric properties of the Au/Ti/HfO2 /n-GaAsstructures. Journal of Molecular Structure 2018; 1157: 513-518. doi:10.1016/j.molstruc.2017.12.087
  • [33] Sattar AA, Rahman SA. Dielectric properties of rare earth substituted Cu–Znferrites. Physica Status Solidi A 2003; 200 (2): 415-422. doi: 10.1002/pssa.200306663
  • [34] Tripathi R, Kumar A, Bharti C, Sinha TP. Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Current Applied Physics 2010; 10 (2): 676-681. doi: 10.1016/j.cap.2009.08.015
  • [35] Coşkun M, Polat Ö, Coşkun FM, Durmuş Z, Çağlar M et al. Frequency and temperature dependent electrical and dielectric properties of LaCrO3 and Ir doped LaCrO3 perovskite compounds. Journal of Alloys and Compounds 2018; 740: 1012-1023. doi: 10.1016/j.jallcom.2018.01.022
  • [36] Bibi M, Abbas H, Baqi S. Outcome of temperature variation on sol-gel prepared CuO nanostructure properties (optical and dielectric). Materials Chemistry and Physics 2017; 192: 67-71. doi: 10.1016/j.matchemphys.2017.01.074
  • [37] Kumari K, Prasad K, Choudhary RNP. Impedance spectroscopy of (Na0.5 Bi0.5) (Zr0.25 Ti0.75) O3 lead-free ceramic. Journal of Alloys and Compounds 2008; 453(1-2): 325-331. doi: 10.1016/j.jallcom.2006.11.081
  • [38] Omri A, Bejar M, Dhahri E, Es-Souni M, Valente MA et al. Electrical conductivity and dielectric analysis of La0.75 (Ca,Sr)0.25 Mn0.85 Ga0.15 O3 perovskite compound. Journal of Alloys and Compounds 2012; 536: 173-178. doi: 10.1016/j.jallcom.2012.04.094
  • [39] Wu IW, Wang PS, Tseng WH, Chang JH, Wu CI. Correlations of impedance–voltage characteristics and carrier mobility in organic light emitting diodes. Organic Electronics 2012; 13 (1): 13-17. doi: 10.1016/j.orgel.2011.09.016
  • [40] Gogoi P, Srinivas P, Sharma P, Pamu D. Optical, dielectric characterization and impedance spectroscopy of Nisubstituted MgTiO3 thin films. Journal of Electronic Materials 2016; 45 (2): 899-909. doi: 10.1007/s11664-015- 4209-3
  • [41] Lvovich VF. Impedance Spectroscopy. Applications to Electrochemical and Dielectric Phenomena, USA: John Wiley&Sons, 2012.
  • [42] Bilkan Ç, Azizian-Kalandaragh Y, Altındal Ş, Shokrani-Havigh R. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3 O4 -PVA/p-Si structures. Physica B: Condensed Matter 2016; 500: 154-160. doi: 10.1016/j.physb.2016.08.001
  • [43] Dökme İ, Altındal Ş, Gökçen M. Frequency and gate voltage effects on the dielectric properties of Au/SiO2 /n-Si structures. Microelectronic Engineering 2008; 85 (9): 1910-1914. doi: 10.1016/j.mee.2008.06.009
  • [44] Pissis P, Kyritsis A. Electrical conductivity studies in hydrogels. Solid State Ionics 1997; 97 (1): 105-113. doi: 10.1016/S0167-2738(97)00074-X
  • [45] Migahed MD, Ishra M, Fahmy T, Barakat A. Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature. Journal of Physics and Chemistry of Solids 2004; 65 (6): 1121-1125. doi: 10.1016/j.jpcs.2003.11.039
  • [46] Saghrouni H, Jomni S, Belgacem W, Hamdaoui N, Beji L. Physical and electrical characteristics of metal/Dy2 O3 /p- GaAs structure. Physica B: Condensed Matter 2014; 444: 58-64. doi: 10.1016/j.physb.2014.03.030
  • [47] Coşkun M, Polat Ö, Coşkun FM, Durmuş Z, Çağlar M et al. Electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO³and LaCr°.9°Ir°.0°O³perovskites. RSC advances 2018; 8: 4634-4648. doi: 10.1039/c7ra13261a
  • [48] Şafak Y, Asar T, Altındal Ş, Özçelik S. Dielectric spectroscopy studies and ac electrical conductivity on (AuZn)/TiO2 /p-GaAs (110) MIS structures. Philosophical Magazine 2015; 95 (26): 2885-2898. doi: 10.1080/14786435.2015.1081301
  • [49] Vural Ö, Şafak Y, Türüt A, Altındal Ş. Temperature dependent negative capacitance behavior of Al/rhodamine- 101/n-GaAs Schottky barrier diodes and Rs effects on the C–V and G/ω–V characteristics. Journal of Alloys and Compounds 2012; 513: 107-111. doi: 10.1016/j.jallcom.2011.09.101
  • [50] Yücedağ İ, Kaya A, Tecimer H, Altındal Ş. Temperature and voltage dependences of dielectric properties and ac electrical conductivity in Au/PVC+TCNQ/p-Si structures. Materials Science in Semiconductor Processing 2014; 28: 37-42. doi: 10.1016/j.mssp.2014.03.051
  • [51] Ladhar A, Arous M, Kaddami H, Raihane M, Kallel A et al. AC and DC electrical conductivity in natural rubber/nanofibrillated cellulose nanocomposites. Journal of Molecular Liquids 2015; 209: 272-279. doi: 10.1016/j.molliq.2015.04.020
APA ORAK İ, Karabulut A (2020). Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. , 85 - 94. 10.3906/fiz-1907-21
Chicago ORAK İkram,Karabulut Abdulkerim Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. (2020): 85 - 94. 10.3906/fiz-1907-21
MLA ORAK İkram,Karabulut Abdulkerim Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. , 2020, ss.85 - 94. 10.3906/fiz-1907-21
AMA ORAK İ,Karabulut A Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. . 2020; 85 - 94. 10.3906/fiz-1907-21
Vancouver ORAK İ,Karabulut A Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. . 2020; 85 - 94. 10.3906/fiz-1907-21
IEEE ORAK İ,Karabulut A "Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure." , ss.85 - 94, 2020. 10.3906/fiz-1907-21
ISNAD ORAK, İkram - Karabulut, Abdulkerim. "Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure". (2020), 85-94. https://doi.org/10.3906/fiz-1907-21
APA ORAK İ, Karabulut A (2020). Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. Turkish Journal of Physics, 44(1), 85 - 94. 10.3906/fiz-1907-21
Chicago ORAK İkram,Karabulut Abdulkerim Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. Turkish Journal of Physics 44, no.1 (2020): 85 - 94. 10.3906/fiz-1907-21
MLA ORAK İkram,Karabulut Abdulkerim Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. Turkish Journal of Physics, vol.44, no.1, 2020, ss.85 - 94. 10.3906/fiz-1907-21
AMA ORAK İ,Karabulut A Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. Turkish Journal of Physics. 2020; 44(1): 85 - 94. 10.3906/fiz-1907-21
Vancouver ORAK İ,Karabulut A Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure. Turkish Journal of Physics. 2020; 44(1): 85 - 94. 10.3906/fiz-1907-21
IEEE ORAK İ,Karabulut A "Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure." Turkish Journal of Physics, 44, ss.85 - 94, 2020. 10.3906/fiz-1907-21
ISNAD ORAK, İkram - Karabulut, Abdulkerim. "Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3 /p-Si structure". Turkish Journal of Physics 44/1 (2020), 85-94. https://doi.org/10.3906/fiz-1907-21