Gökhan AÇIK
(Piri Reis Üniversitesi)
MUSA KAMACI
(Piri Reis Üniversitesi)
Burak ÖZATA
(Piri Reis Üniversitesi)
CAHİDE ELİF ÖZEN CANSOY
(Piri Reis Üniversitesi)
Yıl: 2019Cilt: 43Sayı: 1ISSN: 1300-0527 / 1303-6130Sayfa Aralığı: 137 - 149İngilizce

56 0
Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers
In this study, the electrospinning method was used to prepare polyvinyl alcohol (PVA)/chitosan (CS) blendnanofibers from their solutions. The effect of blend ratios (PVA/CS: 1%, 3%, 5%, and 7% (w/w)), applied voltage,and flow rate on the morphological, optical, and thermal properties of electrospun nanofibers were investigated byscanning electron microscopy (SEM), fluorescence and UV-Vis spectroscopies, and thermogravimetric analysis (TGA),respectively. Fourier transform infrared spectroscopy analysis indicated the existence of related functional groups of bothPVA and CS in the electrospun fibers. During the electrospinning process, the maximum possible ratio of CS was 7%(w/w). SEM images indicated that more flat nanofibers were synthesized at lower flow rates, but the shape of the fiberswas more circular at higher flow rates. On the other hand, an increase in CS ratio, flow rate, and applied voltage causeda decrease in the transmittance values of the fibers while samples including higher concentrations of CS showed loweremission intensities. Furthermore, the thermal properties of the electrospun fibers were developed by incorporation of ahigh amount of CS.
Fen > Temel Bilimler > Kimya, Analitik
Fen > Temel Bilimler > Kimya, Uygulamalı
Fen > Temel Bilimler > Kimya, İnorganik ve Nükleer
Fen > Temel Bilimler > Kimya, Tıbbi
Fen > Temel Bilimler > Kimya, Organik
Fen > Mühendislik > Mühendislik, Kimya
DergiAraştırma MakalesiErişime Açık
  • 1. Chronakis, S. I. J. Mater. Process. Technol. 2005, 167, 283-293.
  • 2. Mokhena, T.; Jacobs, V.; Luyt, A. Express Polym. Lett. 2015, 9, 839-880.
  • 3. Greiner, A.; Wendorff, J. H. Angew. Chem. Int. Ed. 2007, 46, 5670-5703.
  • 4. Cengiz, U.; Avci, Z. M.; Erbil, H. Y.; Sarac, S. A. Appl. Surf. Sci. 2012, 258, 5815-5821.
  • 5. Uyar, T.; Çökeliler, D.; Doğan, M.; Koçum, I. C.; Karatay, O.; Denkbaş, E. B. Mater. Sci. Eng. C 2016, 62, 762-770.
  • 6. Koski, A.; Yim, K.; Shivkumar, S. Mater. Lett. 2004, 58, 493-497.
  • 7. Tao, J.; Shivkumar, S. Mat. Lett. 2007, 61, 2325-2328.
  • 8. Homayoni, H.; Ravandi, S. A. H.; Valizadeh, M. Carbohydr. Polym. 2009, 77, 656-661.
  • 9. Deitzel, M. J.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C. Polymer 2001, 42, 261-272.
  • 10. Synowiecki, J.; Al Khateeb, N. A. A. Q. Food Chem. 1997, 60, 605-610.
  • 11. Geng, X.; Kwon, O. H.; Jang, J. Biomaterials 2005, 26, 5427-5432.
  • 12. Neamnark, A.; Rujiravanit, R.; Supaphol, P. Carbohydr. Polym. 2006, 66, 298-305.
  • 13. BeMiller, J. N.; Whistler, R. L. Industrial Gums: Polysaccharides and Their Derivatives; Academic Press: Cambridge, MA, USA, 2012.
  • 14. Ohkawa, K.; Cha, D.; Kim, H.; Nishida, A.; Yamamoto, H. Macromol. Rapid Commun. 2004, 25, 1600-1605.
  • 15. Duan, B.; Yuan, X.; Zhu, Y.; Zhang, Y.; Li, X.; Zhang, Y.; Yao, K. Eur. Polym. J. 2006, 42, 2013-2022.
  • 16. Jia, Y. T.; Gong, J.; Gu, X. H.; Kim, H. Y.; Dong, J.; Shen, X. Y. Carbohydr. Polym. 2007, 67, 403-409.
  • 17. Çay, A.; Miraftab, M.; Kumbasar, E. P. A. Eur. Polym. J. 2014, 61, 253-262.
  • 18. Guibal, E.; Vooren, M. V.; Dempsey, A. B.; Roussy, J. Sep. Sci. Technol. 2006, 41, 2487-2515.
  • 19. Lin, T.; Fang, J.; Wang, H.; Cheng, T.; Wang, X. Nanotechnology 2006, 17, 3718-3723.
  • 20. Gholipour, A.; Bahrami, S.; Nouri, M. e-Polymers 2010, 10, 1-9.
  • 21. Giannakas, A.; Vlacha, M.; Salmas, C.; Leontiou, A.; Katapodis, P.; Stamatis, H.; Barkoula, N. M.; Ladavos, A. Carbohydr. Polym. 2016, 140, 408-415.
  • 22. Miri, N. E.; Abdelouahdi, K.; Zahouily, M.; Fihri, A.; Barakat, A.; Solhy, A.; Achaby, M. E. J. Appl. Polym. Sci. 2015, 132, 1-13.
  • 23. Zhu, H.; Parvinian, S.; Preston, C.; Vaaland, O.; Ruan, Z.; Hu, L. Nanoscale 2013, 5, 3787-3792.
  • 24. Park, J. Y.; Lee, I. H.; Bea, G. N. J. Ind. Eng. Chem. 2008, 14, 707-713.
  • 25. Li, B.; Pan, S.; Yuan, H.; Zhang, Y. Composites Part A 2016, 90, 380-389.
  • 26. Acik, G.; Yildiran, S.; Kok, G.; Salman, Y.; Tasdelen, M. A. Express Polym. Lett. 2017, 11, 799-808.
  • 27. Baba, E. M.; Cansoy, C. E.; Zayim, E. O. Appl. Surf. Sci. 2015, 350, 115-120.
  • 28. Aliabadi, M.; Irani, M.; Ismaeili, J.; Najafzadeh, S. J. Taiwan Inst. Chem. Eng. 2014, 45, 518-526.
  • 29. Chen, C. H.; Wang, F. Y.; Mao, C. F.; Liao, W. T.; Hsieh, C. D. Int. J. Biol. Macromol. 2008, 43, 37-42.
  • 30. Kamaci, M.; Kaya, I. Polym. Eng. Sci. 2014, 54, 1664-1674.
  • 31. Jahan, F.; Devendrappa, M.; Mathad, R.D. AIP Conf. Proc. 2018, 1989, 020014.
  • 32. De Britto, D.; Campana F. S. P. Polym. Degrad. Stab. 2004, 84, 353-361.
  • 33. Zhou, X. Y.; Jia, D. M.; Cui, Y. F.; Xie, D. J. Reinf. Plast. Compos. 2009, 28, 2771-2780.
  • 34. Lee, H. W.; Karim, M. R.; Park, J. H.; Ghim, H. D.; Choi, J. H.; Kim, K.; Deng, Y.; Yeum, J. H. J. Appl. Polym. Sci. 2009, 111, 132-140.
  • 35. El Hefian, E. A.; Nasef, M. M.; Yahaya, A. H. J. Chem. 2010, 7, 1212-1219.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.