Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption

Yıl: 2019 Cilt: 43 Sayı: 2 Sayfa Aralığı: 687 - 704 Metin Dili: İngilizce DOI: 10.3906/kim-1810-32 İndeks Tarihi: 08-05-2020

Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption

Öz:
Magnetic and nonmagnetic activated carbons (ACs) were successfully prepared by using AC obtained fromspent coffee grounds (SCGs) for use in CO2 and CH4 capture. SCGs were activated by chemical activation to produce ACs and a magnetic α-Fe 2 O3 /AC composite was prepared by coprecipitation method from the ACs produced. Magnetic and nonmagnetic samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry (EDX) techniques. The textural properties of samples were determined by nitrogen adsorption-desorption using the Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods. The results showed that the porosity of AC was not blocked by αFe 2 O3 particles. According to adsorption-desorption experiments, the best results were obtained with the magnetic α-Fe 2 O3 /AC sample (1.68 mmol g −1 for CO2 and 0.65 mmol g −1for CH4) at 0 °C and 120 kPa. Adsorption performances were evaluated using four isotherm models. The isosteric heats of adsorption calculated for both adsorbents were smaller than 80 kJ/mol and it revealed that CO2 and CH4 adsorption is dominated by the physical adsorption. The α-Fe 2 O3 /AC multicycle CO2 adsorption tests showed that it can be successfully regenerated with high sorption capacity. The α-Fe 2 O3 /AC composite is a promising adsorbent for potential application.
Anahtar Kelime:

Konular: Kimya, Analitik Kimya, Uygulamalı Kimya, Organik Kimya, Tıbbi Mühendislik, Kimya Kimya, İnorganik ve Nükleer
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Saha, D.; Bao, Z. B.; Jia, F.; Deng, S. G. Environ. Sci. Technol. 2010, 44, 1820-1826.
  • 2. Heidari, A.; Younesi, H.; Rashidi, A.; Ghoreyshi A. A. Chem. Eng. J. 2014, 254, 503-513.
  • 3. Mei, L.; Liu, X.; Wu J. Sep. Sci. Technol. 2018, 53, 1628-1637.
  • 4. Yuan, B.; Wu, X. F.; Chen, Y. X.; Huang, J. H.; Luo, H. M.; Deng, S. G. Environ. Sci. Technol. 2013, 47, 5474-5480.
  • 5. Liu, X.; Zhou, L.; Fu, X.; Sun, Y.; Su, W.; Zhou, Y. Chem. Eng. Sci. 2007, 62, 1101-1110.
  • 6. Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. J. Membr. Sci. 2010, 359, 115-125.
  • 7. Maqsood, K.; Mullick, A.; Ali, A.; Kargupta, K.; Ganguly S. Rev. Chem. Eng. 2014, 30, 453-477.
  • 8. Kato, M.; Yoshikawa, S.; Nakagawa, K. J. Mater. Sci. Lett. 2002, 21, 485-487.
  • 9. Duan, S.; Gu, M.; Du, X. D.; Xian, X. F. Energy Fuels 2016, 30, 2248-2256.
  • 10. Peng, X.; Wang, W.; Xue, R.; Shen, Z. AIChE Journal 2006, 52, 994-1003.
  • 11. Hamon, L.; Jolimaître, E.; Pirngruber, G. D. Ind. Eng. Chem. Res. 2010, 49, 7497-7503.
  • 12. An, J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 5578-5579.
  • 13. Dunne, J. A.; Rao, M.; Sircar, S.; Gorte, R. J.; Myers, A. L. Langmuir 1996, 12, 5896-5904.
  • 14. Zhang, L.; Wu, G.; Jiang, J. J. Phys. Chem. C 2014, 118, 8788-8794.
  • 15. Cavenati, S.; Grande, C. A.; Rodrigues A. E. J. Chem. Eng. Data 2004, 49, 1095-1101.
  • 16. Kim, S. M.; Kierzkowska, A. M.; Broda, M.; Müller, C. R. Energy Procedia 2017, 114, 220-229.
  • 17. Broda, M.; Müller, C. R. Adv. Mater. 2012, 24, 3059-3064.
  • 18. Dreisbach, F.; Staudt, R.; Keller, J. U. Adsorption 1999, 5, 215-227.
  • 19. Ribeiro, R. P.; Sauer, T. P.; Lopes, F. V.; Moreira, R. F.; Grande, C. A.; Rodrigues, A. E. J. Chem. Eng. Data 2008, 53, 2311-2317.
  • 20. Zhang, G.; Qu, J.; Liu, H.; Cooper, A. T.; Wu, R. Chemosphere 2007, 68, 1058-1066.
  • 21. Ranjithkumar, V.; Sangeetha, S.; Vairam S. J. Hazard. Mater. 2014, 273, 127-135.
  • 22. Cazetta, A. L.; Pezoti, O.; Bedin, K. C.; Silva, T. L.; Paesano, A.; Asefa, T.; Almeida, V. C. ACS Sustain. Chem. Eng. 2016, 4, 1058-1068.
  • 23. Mahmoud, M. E.; Khalifa, M. A.; El Wakeel, Y. M.; Header, M. S.; Abdel-Fattah, T. M. J. Nucl. Mater. 2017, 487, 13-22.
  • 24. Ranjithkumar, V.; Sangeetha, S.; Vairam, S. J. Hazard. Mater. 2014, 273, 127-135.
  • 25. Liu, Y.; Zhu, X.; Qian, F.; Zhang, S.; Chen, J. RSC Adv. 2014, 4, 63620-63626.
  • 26. Li, M.; Huang, K.; Schott, J.A.; Wu, Z.; Dai, S. Microporous Mesoporous Mater. 2017, 249, 34-41.
  • 27. Bayazit, Ş. S.; Kerkez, Ö. Chem. Eng. Res. Des. 2014, 92, 2725-2733.
  • 28. Wang, C.; Feng, C.; Gao, Y.; Ma, X.; Wu, Q.; Wang, Z. Chem. Eng. J. 2011, 173, 92-97.
  • 29. Yao, Y.; Miao, S.; Liu, S.; Ma, L. P.; Sun, H.; Wang, S. Chem. Eng. J. 2012, 184, 326-332.
  • 30. Luo, X.; Lei, X.; Cai, N.; Xie, X.; Xue, Y.; Yu, F. ACS Sustain. Chem. Eng. 2016, 4, 3960-3969.
  • 31. Hao, W.; Björkman, E.; Yun, Y.; Lilliestråle, M.; Hedin, N. ChemSusChem 2014, 7, 875-882.
  • 32. Kwiatkowski, M.; Fierro, V.; Celzard, A. J. Colloid Interface Sci. 2017, 486, 277-286.
  • 33. Safarik, I.; Horska, K.; Svobodova, B. Safarikova, M. Eur. Food Res. Technol. 2012, 234, 345-350.
  • 34. Jutakridsada, P.; Prajaksud, C.; Kuboonya-Aruk, L.; Theerakulpisut, S.; Kamwilaisak, K. Clean Technol. Environ. Policy 2016, 18, 639-645.
  • 35. Kante, K.; Nieto-Delgado, C.; Rangel-Mendez, J. R.; Bandosz, T. J. J. Hazard. Mater. 2012, 201, 141-147.
  • 36. Zhang, L.; Li, F. Appl. Clay Sci. 2010, 50, 64-72.
  • 37. Ai, L.; Zhang, C.; Chen, Z. J. Hazard. Mater. 2011, 192, 1515-1524.
  • 38. Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H. J. Power Sources 2008, 183, 717-723.
  • 39. Saroyan, H. S.; Giannakoudakis, D. A.; Sarafidis, C. S.; Lazaridis, N. K.; Deliyanni, E. A. J. Chem. Technol. Biotechnol. 2017, 92, 1899-1911.
  • 40. Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Lehocine, M. B.; Dubois, M.; Batisse, N.; Duclaux, L. J. Hazard. Mater. 2010, 175, 779-788.
  • 41. Foo, K. Y.; Hameed, B. H. Chem. Eng. J. 2011, 170, 338-341.
  • 42. Ching, S. L.; Yusoff, M. S.; Aziz, H. A.; Umar, M. Desalination 2011, 279, 225-234.
  • 43. Dong, Y. L.; Zhang, X. F.; Cheng, X. L.; Xu, Y. M.; Gao, S.; Zhao, H.; Huo, L. H. RSC Adv. 2014, 4, 57493-57500.
  • 44. Shang, H. S.; Lu, Y. J.; Zhao, F.; Chao, C.; Zhang, B.; Zhang, H. S. RSC Adv. 2015, 5, 75728-75734.
  • 45. Mohan, D.; Sarswat, A.; Singh, V. K.; Alexandre-Franco, M.; Pittman, C. U. Chem. Eng. J. 2011, 172, 1111-1125.
  • 46. Rey, A.; Quiñones, D. H.; Álvarez, P. M.; Beltrán, F. J.; Plucinski, P. K. Appl. Catal. B-Environ. 2012, 111-112, 246-253.
  • 47. Houshmand, A.; Wan Daud, W. M. A.; Shafeeyan, M. S. Sep. Sci. Technol. 2011, 46, 1098-1112.
  • 48. Jin, Z.; Firoozabadi, A. Fluid Phase Equilib. 2013, 360, 456-465.
  • 49. David, E.; Kopac, J. J. Anal. Appl. Pyrolysis 2014, 110, 322-332.
  • 50. Zhang, Z. Q.; Wang, K.; Atkinson, J. D.; Yan, X. L.; Li, X.; Rood, M. J.; Yan, Z. F. J. Hazard. Mater. 2012, 229, 183-191.
  • 51. Plaza, M. G.; García, S.; Rubiera, F.; Pis, J. J.; Pevida, C. Sep. Purif. Technol. 2011, 80, 96-104.
  • 52. Plaza, M. G.; García, S.; Rubiera, F.; Pis, J. J.; Pevida, C. Chem. Eng. J. 2010, 163, 41-47.
  • 53. Jackson, K. T.; Rabbani, M. G.; Reich, T. E.; El-Kaderi, H. M. Polym. Chem. 2011, 2, 2775-2777.
  • 54. Parshetti, G. K.; Chowdhury, S.; Balasubramanian, R. Fuel 2015, 148, 246-254.
  • 55. González, A. S.; Plaza, M. G.; Rubiera, F.; Pevida, C. Chem. Eng. J. 2013, 230, 456-465.
  • 56. Thote, J. A.; Iyer, K. S.; Chatti, R.; Labhsetwar, N. K.; Biniwale, R. B.; Rayalu, S. S. Carbon 2010, 48, 396-402.
  • 57. Maroto-Valer, M. M.; Lu, Z.; Zhang, Y.; Tang, Z. Waste Manage. 2008, 28, 2320-2328.
  • 58. Plaza, M. G.; González, A. S.; Pevida, C.; Pis, J. J.; Rubiera, F. Appl. Energy 2012, 99, 272-279.
  • 59. Rashidi, N. A.; Yusup, S.; Borhan, A. Procedia Eng. 2016, 148, 630-637.
  • 60. Shafeeyan, M. S.; Daud, W. M. A. W.; Shamiri, A.; Aghamohammadi, N. Chem. Eng. Res. Des. 2015, 104, 42-52.
  • 61. Himeno, S.; Komatsu, T.; Fujita, S. J. Chem. Eng. Data 2005, 50, 369-376.
  • 62. Zhou, L.; Zhou, Y.; Sun, Y. Int. J. Hydrogen Energy 2004, 29, 475-479.
  • 63. Singh, V. K.; Anil Kumar, E. Appl. Therm. Eng. 2016, 97, 77-86.
  • 64. Saleh, T. A.; Tuzen, M.; Sarı, A. J. Environ. Chem. Eng. 2017, 5, 2853-2860.
  • 65. Debnath, A.; Deb, K.; Chattopadhyay, K. K.; Saha, B. Desalination Water Treat. 2016, 57, 13549-13560.
  • 66. Chiang, Y. C.; Hsu, W. L.; Lin, S. Y.; Juang, R. S. Materials 2017, 10, 511.
  • 67. Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Al Syouf, M. Q. J. Environ. Chem. Eng. 2015, 3, 775-784.
  • 68. Choma, J.; Stachurska, K.; Marszewski, M.; Jaroniec, M. Adsorption 2016, 22, 581-588.
APA KIRBIYIK Ç (2019). Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. , 687 - 704. 10.3906/kim-1810-32
Chicago KIRBIYIK Çisem Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. (2019): 687 - 704. 10.3906/kim-1810-32
MLA KIRBIYIK Çisem Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. , 2019, ss.687 - 704. 10.3906/kim-1810-32
AMA KIRBIYIK Ç Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. . 2019; 687 - 704. 10.3906/kim-1810-32
Vancouver KIRBIYIK Ç Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. . 2019; 687 - 704. 10.3906/kim-1810-32
IEEE KIRBIYIK Ç "Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption." , ss.687 - 704, 2019. 10.3906/kim-1810-32
ISNAD KIRBIYIK, Çisem. "Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption". (2019), 687-704. https://doi.org/10.3906/kim-1810-32
APA KIRBIYIK Ç (2019). Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. Turkish Journal of Chemistry, 43(2), 687 - 704. 10.3906/kim-1810-32
Chicago KIRBIYIK Çisem Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. Turkish Journal of Chemistry 43, no.2 (2019): 687 - 704. 10.3906/kim-1810-32
MLA KIRBIYIK Çisem Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. Turkish Journal of Chemistry, vol.43, no.2, 2019, ss.687 - 704. 10.3906/kim-1810-32
AMA KIRBIYIK Ç Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. Turkish Journal of Chemistry. 2019; 43(2): 687 - 704. 10.3906/kim-1810-32
Vancouver KIRBIYIK Ç Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption. Turkish Journal of Chemistry. 2019; 43(2): 687 - 704. 10.3906/kim-1810-32
IEEE KIRBIYIK Ç "Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption." Turkish Journal of Chemistry, 43, ss.687 - 704, 2019. 10.3906/kim-1810-32
ISNAD KIRBIYIK, Çisem. "Modification of biomass-derived activated carbon with magnetic α-Fe2O3 nanoparticles for CO2 and CH4 adsorption". Turkish Journal of Chemistry 43/2 (2019), 687-704. https://doi.org/10.3906/kim-1810-32