Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces

Yıl: 2019 Cilt: 43 Sayı: 5 Sayfa Aralığı: 502 - 515 Metin Dili: İngilizce DOI: 10.3906/fiz-1905-31 İndeks Tarihi: 12-05-2020

Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces

Öz:
A theoretical study of oxygen adsorption on gold and gold-silver surfaces by means of density functionaltheory (DFT) calculations with an atomistic thermodynamic model is performed. The (111) and (211) facets of goldand gold-silver alloy surfaces are considered, and their stabilization is discussed upon adsorption of oxygen dependingon O and Ag coverage. The details of how the DFT-based atomistic thermodynamic model can apply to the transitionmetal surface are also presented in this work.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Wittstock A, Biener J, Bäumer M. Nanoporous gold: a new material for catalytic and sensor applications. Physical Chemistry Chemical Physics 2010; 12: 12919-12930. doi: 10.1039/C0CP00757A.
  • [2] Moskaleva LV, Rohe S, Wittstock A, Zielasek V, Kluner T et al. Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Physical Chemistry Chemical Physics 2011; 13: 4529-4539. doi: 10.1039/C0CP02372H.
  • [3] Stowers K, Madix R, Friend C. From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: oxygen-assisted coupling reactions. Journal of Catalysis 2013; 308: 131-141. doi: 10.1016/j.jcat.2013.05.033.
  • [4] Wittstock A, Bäumer M. Catalysis by unsupported skeletal gold catalysts. Accounts of Chemical Research 2014; 47: 731-739. doi: 10.1021/ar400202p.
  • [5] Barakat T, Rooke JC, Genty E, Cousin R, Siffert S et al. Gold catalysts in environmental remediation and water-gas shift technologies. Energy and Environmental Science 2013; 6: 371-391. doi: 10.1039/C2EE22859A.
  • [6] Xu B, Madix RJ, Friend CM. Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. Accounts of Chemical Research 2014; 47: 761-772. doi: 10.1021/ar4002476.
  • [7] Burch R. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Physical Chemistry Chemical Physics 2006; 8: 5483-5500. doi: 10.1039/B607837K.
  • [8] Samano E, Kim J, Koel BE. Investigation of CO oxidation transient kinetics on an oxygen pre-covered Au(211) stepped surface. Catalysis Letters 2009; 128: 263-267. doi: 10.1007/s10562-008-9815-8.
  • [9] Montemore MM, van Spronsen MA, Madix RJ, Friend CM. O2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chemical Reviews 2018; 118: 2816-2862. doi: 10.1021/acs.chemrev.7b00217.
  • [10] Lefferts L, van Ommen J, Ross J. The oxidative dehydrogenation of methanol to formaldehyde over silver catalysts in relation to the oxygen-silver interaction. Applied Catalysis 1986; 23: 385-402. doi: 10.1016/S0166-9834(00)81306-8.
  • [11] Grabow LC, Hvolbæk B, Nørskov JK. Understanding trends in catalytic activity: the effect of adsorbate–adsorbate interactions for CO oxidation over transition metals. Topics in Catalysis 2010; 53: 298-310. doi: 10.1007/s11244- 010-9455-2.
  • [12] Serafin J, Liu A, Seyedmonir S. Surface science and the silver-catalyzed epoxidation of ethylene: an industrial perspective. Journal of Molecular Catalysis A 1998; 131: 157-168. doi: 10.1016/S1381-1169(97)00263-X.
  • [13] Chatterjee D, Deutschmann O, Warnatz J. Detailed surface reaction mechanism in a three-way catalyst. Faraday Discussions 2002; 119: 371-384. doi: 10.1039/B101968F.
  • [14] Fajín JLC, Cordeiro MNDS, Gomes JRB. On the theoretical understanding of the unexpected O2 activation by nanoporous gold. Chemical Communications 2011; 47: 8403-8405. doi: 10.1039/C1CC12166A.
  • [15] Ferrando R, Jellinek J, Johnston RL. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chemical Reviews 2008; 108: 845-910. doi: 10.1021/cr040090g.
  • [16] Biener J, Biener MM, Madix RJ, Friend CM. Nanoporous gold: understanding the origin of the reactivity of a 21st century catalyst made by pre-Columbian technology. ACS Catalysis 2015; 5: 6263-6270. doi: 10.1021/acscatal. 5b01586.
  • [17] Wittstock A, Wichmann A, Biener J, Bäumer M. Nanoporous gold: a new gold catalyst with tunable properties. Faraday Discussion 2011; 152: 87-98. doi: 10.1039/C1FD00022E.
  • [18] Déronzier T, Morfin F, Lomello M, Rousset JL. Catalysis on nanoporous gold-silver systems: Synergistic effects toward oxidation reactions and influence of the surface composition. Journal of Catalysis 2014; 311: 221-229. doi: 10.1016/j.jcat.2013.12.001.
  • [19] Montemore MM, Madix RJ, Kaxiras E. How does nanoporous gold dissociate molecular oxygen? Journal of Physical Chemistry C 2016; 120: 16636-16640. doi: 10.1021/acs.jpcc.6b03371.
  • [20] Zugic B, Wang L, Heine C, Zakharov DN, Lechner BAJ et al. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nature Materials 2016; 16: 558-564. doi: 10.1038/nmat4824.
  • [21] Fujita T, Guan P, McKenna K, Lang X, Hirata A et al. Atomic origins of the high catalytic activity of nanoporous gold. Nature Materials 2012; 1: 775-780. doi: 10.1038/nmat3391 DO - 10.1038/nmat3391 ID.
  • [22] Roldán A, González S, Ricart JM, Illas F. Critical size for O2 dissociation by Au nanoparticles. Chemical Physics and Physical Chemistry 2009; 10: 348-351. doi: 10.1002/cphc.200800702.
  • [23] Kim J, Samano E, Koel BE. Oxygen adsorption and oxidation reactions on Au(211) surfaces: exposures using O2 at high pressures and ozone (O3 ) in UHV. Surface Science 2006; 600: 4622-4632. doi: 10.1016/j.susc.2006.07.057.
  • [24] Xinhe B, Jingfa D. The oxidation of methanol on electrolytic silver catalyst. Journal of Catalysis 1986; 99: 391-399. doi: 10.1016/0021-9517(86)90364-7.
  • [25] Waterhouse GI, Bowmaker GA, Metson JB. Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst. Applied Catalysis A 2004; 265: 85-101. doi: 10.1016/j.apcata.2004.01.016.
  • [26] Bao X, Muhler M, Pettinger B, Schlögl R, Ertl G. On the nature of the active state of silver during catalytic oxidation of methanol. Catalysis Letters 1993; 22: 215-225. doi: 10.1007/BF00810368.
  • [27] Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R. The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction. Journal of Catalysis 1998; 179: 548-559. doi: 10.1006/jcat.1998.2240.
  • [28] Baker TA, Liu X, Friend CM. The mystery of gold’s chemical activity: local bonding, morphology and reactivity of atomic oxygen. Physical Chemistry Chemical Physics 2011; 13: 34-46. doi: 10.1039/C0CP01514H.
  • [29] Quiller RG, Baker TA, Deng X, Colling ME, Min BK et al. Transient hydroxyl formation from water on oxygencovered Au(111). Journal of Chemical Physics 2008; 129: 064702. doi: 10.1063/1.2965821.
  • [30] Karatok M, Vovk EI, Koc AV, Ozensoy E. Selective catalytic ammonia oxidation to nitrogen by atomic oxygen species on Ag(111). Journal of Physical Chemistry C 2017; 121: 22985-22994. doi: 10.1021/acs.jpcc.7b08291.
  • [31] Reuter K, Scheffler M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Physical Review B 2001; 65: 035406. doi: 10.1103/PhysRevB.65.035406.
  • [32] Moskaleva LV, Weiss T, Klüner T, Bäumer M. Chemisorbed oxygen on the Au(321) surface alloyed with silver: a first-principles investigation. Journal of Physical Chemistry C 2015; 119: 9215-9226. doi: 10.1021/jp511884k.
  • [33] Li WX, Stampfl C, Scheffler M. Why is a noble metal catalytically active? The role of the O-Ag interaction in the function of silver as an oxidation catalyst. Physical Review Letters 2003; 90: 256102. doi: 10.1103/Phys- RevLett.90.256102.
  • [34] Li WX, Stampfl C, Scheffler M. Insights into the function of silver as an oxidation catalyst by ab initio atomistic thermodynamics. Physical Review B 2003; 68: 165412. doi: 10.1103/PhysRevB.68.165412.
  • [35] Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C. Water adsorption on the stoichiometric and reduced CeO2(111) surface: a first-principles investigation. Physical Chemistry Chemical Physics 2009; 11: 9188-9199. doi: 10.1039/B901831J.
  • [36] Jones TE, Rocha TCR, Knop-Gericke A, Stampfl C, Schlögl R et al. Thermodynamic and spectroscopic properties of oxygen on silver under an oxygen atmosphere. Physical Chemistry Chemical Physics 2015; 17: 9288-9312. doi: 10.1039/C5CP00342C.
  • [37] Reuter K, Stampf C, Scheffler M. Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions. In: Yip S (editor). Handbook of Materials Modeling. Berlin, Germany: Springer, 2005, pp. 149-194.
  • [38] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996; 6: 15-50. doi: 10.1016/0927-0256(96)00008-0.
  • [39] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B 1993; 47: 558-561. doi: 10.1016/0022-3093(95)00355-X.
  • [40] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77: 3865-3868. doi: 10.1103/PhysRevLett.77.3865.
  • [41] Blöchl PE. Projector augmented-wave method. Physical Review B 1994; 50: 17953-17979. doi: 10.1103/Phys- RevB.50.17953.
  • [42] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999; 59: 1758-1775. doi: 10.1103/PhysRevB.59.1758.
  • [43] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Physical Review B 1976; 13: 5188-5192. doi: 10.1103/PhysRevB.13.5188.
  • [44] Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters 2009; 102: 073005. doi: 10.1103/PhysRevLett.102.073005.
  • [45] Rogal J. Stability, composition and function of palladium surfaces in oxidizing environments: a first-principle statistical mechanics approach. PhD, Freie Universität Berlin, Berlin, Germany, 2006.
  • [46] Zangwill A. Physics at Surfaces. Cambridge, UK: Cambridge University Press, 1988.
  • [47] Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on gold surfaces: effect of steps and strain. Journal of Physical Chemistry B 2003; 107: 9298-9307. doi: 10.1021/jp034380x
  • [48] Klyushin AY, Rocha TCR, Hävecker M, Knop-Gericke A, Schlögl R. A near ambient pressure XPS study of Au oxidation. Physical Chemistry Chemical Physics 2014; 16: 7881-7886. doi: 10.1039/C4CP00308J.
  • [49] Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010; 327: 319-322. doi: 10.1126/science.1183591.
  • [50] Personick ML, Zugic B, Biener MM, Biener J, Madix RJ et al. Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation. ACS Catalysis 2015; 5: 4237-4241. 10.1021/acscatal.5b00330.
APA ŞENSOY M (2019). Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. , 502 - 515. 10.3906/fiz-1905-31
Chicago ŞENSOY Mehmet Gökhan Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. (2019): 502 - 515. 10.3906/fiz-1905-31
MLA ŞENSOY Mehmet Gökhan Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. , 2019, ss.502 - 515. 10.3906/fiz-1905-31
AMA ŞENSOY M Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. . 2019; 502 - 515. 10.3906/fiz-1905-31
Vancouver ŞENSOY M Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. . 2019; 502 - 515. 10.3906/fiz-1905-31
IEEE ŞENSOY M "Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces." , ss.502 - 515, 2019. 10.3906/fiz-1905-31
ISNAD ŞENSOY, Mehmet Gökhan. "Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces". (2019), 502-515. https://doi.org/10.3906/fiz-1905-31
APA ŞENSOY M (2019). Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. Turkish Journal of Physics, 43(5), 502 - 515. 10.3906/fiz-1905-31
Chicago ŞENSOY Mehmet Gökhan Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. Turkish Journal of Physics 43, no.5 (2019): 502 - 515. 10.3906/fiz-1905-31
MLA ŞENSOY Mehmet Gökhan Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. Turkish Journal of Physics, vol.43, no.5, 2019, ss.502 - 515. 10.3906/fiz-1905-31
AMA ŞENSOY M Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. Turkish Journal of Physics. 2019; 43(5): 502 - 515. 10.3906/fiz-1905-31
Vancouver ŞENSOY M Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces. Turkish Journal of Physics. 2019; 43(5): 502 - 515. 10.3906/fiz-1905-31
IEEE ŞENSOY M "Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces." Turkish Journal of Physics, 43, ss.502 - 515, 2019. 10.3906/fiz-1905-31
ISNAD ŞENSOY, Mehmet Gökhan. "Ab initio atomistic thermodynamics modeling of adsorption of oxygen on gold and gold-silver surfaces". Turkish Journal of Physics 43/5 (2019), 502-515. https://doi.org/10.3906/fiz-1905-31