Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition

Yıl: 2019 Cilt: 43 Sayı: 5 Sayfa Aralığı: 531 - 539 Metin Dili: İngilizce DOI: 10.3906/fiz-1907-1 İndeks Tarihi: 12-05-2020

Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition

Öz:
Recently, two-dimensional (2D) transition metal carbides and nitrides known as MXenes, have gained a lotof attention because of their tunable electronic and magnetic properties depending on surface functionalization. In thepresent work, the structural, electronic, and magnetic properties of both T and H phases of bare Ti2 C and fully surfaceterminated Ti2 CT2 (T = -F, = O, -OH) are calculated using a set of first principles calculations. The ground statestructures of Ti2 CT2 are computed in two and four different configurations for both H and T phases, respectively. Wedemonstrate that while H phase of Ti2 C exhibits half-metallic behavior with magnetic moments of 2 μB per formulaunit, it displays metallic behavior with magnetic moments of 1.27 μB , 0.25 μB per formula unit, and semiconductorbehavior with 0.35 eV band gap in -F, -OH, and =O surface functionalization, respectively. We also show that whileT phase of Ti2 C exhibits metallic behavior with magnetic moment of 1.89 μB per formula unit, it stays in metallicnonmagnetic behavior in both -F and -OH. Meanwhile, it displays semiconductor behavior with 0.25 eV band gap in -Osurface functionalization. We expect that our results can advance the future applications of MXenes from energy storageto spintronic.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 2004; 306 (5696): 666-669. doi:10.1126/science.1102896
  • [2] Geim AK, Novoselov KS. The rise of graphene. Nanoscience and Technology: A Collection of Reviews from Nature Journals 2010; 11-19. doi:10.1038/nmat1849
  • [3] Yağmurcukardeş M, Özen S, İyikanat F, Peeters FM, Şahin H. Raman fingerprint of stacking order in HfS2 -Ca(OH)2 heterobilayer. Physical Review B 2019; 99 (20): 205405. doi:10.1103/PhysRevB.99.205405
  • [4] Kadıoglu Y, Santana JA, Özaydin HD, Ersan F, Aktürk OÜ et al. Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene. The Journal of Chemical Physics 2018; 148 (21): 214706. doi:10.1063/1.5026120
  • [5] İyikanat F, Şahin H, Senger RT , Peeters FM. Vacancy formation and oxidation characteristics of single layer TiS3. The Journal of Physical Chemistry C 2015; 119 (19): 10709-10715. doi:10.1021/acs.jpcc.5b01562
  • [6] Akgenc B. Two-dimensional black arsenic for Li-ion battery applications: a DFT study. Journal of Materials Science 2019; 54 (13): 9543-9552. doi:10.1007/s10853-019-03597-3
  • [7] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature materials 2004; 3(6): 404-409. doi:10.1038/nmat1134
  • [8] Peng L, Xiong P, Ma L, Yuan Y, Zhu Y et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature communications 2017; 8: 15139. doi:10.1038/ncomms15139
  • [9] Kolobov AV, Tominaga J. Two-Dimensional Transition-Metal Dichalcogenides 2016; (239) doi:10.1007/978-3-319- 31450-1
  • [10] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology 2012; 7 (11): 699. doi:10.1038/NNANO.2012.193
  • [11] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Barsoum MW. Two‐dimensional nanocrystals produced by exfoliation of Ti3 AlC2 . Advanced Materials 2011; 23 (37): 4248-4253. doi:10.1002/adma.201102306
  • [12] Urbankowski P, Anasori B, Makaryan T, Er D, Kota S et al. Synthesis of two-dimensional titanium nitride Ti4 N3 (MXene). Nanoscale 2016; 8 (22): 11385-11391. doi:10.1039/c6nr02253g
  • [13] Halim J, Kota S, Lukatskaya MR, Naguib M, Zhao MQ et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials 2016; 26 (18): 3118-3127. doi:10.1002/adfm.201505328
  • [14] Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two‐dimensional materials. Advanced Materials 2014; 26 (7): 992-1005.
  • [15] Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials 2018; 30 (52): 1804779. doi:10.1002/adma.201304138
  • [16] Lei J, Kutana A, Yakobson BI. Predicting stable phase monolayer Mo2 C (MXene), a superconductor with chemically-tunable critical temperature. Journal of Materials Chemistry C 2017; 5 (14): 3438-3444. doi:10.1039/c7tc00789b
  • [17] Champagne A, Shi L, Ouisse T, Hackens B, Charlier JC. Electronic and vibrational properties of V2 Cbased MXenes: From experiments to first-principles modeling. Physical Review B 2018; 97(11): 115439. doi:10.1103/PhysRevB.97.115439
  • [18] Si C, Zhou J, Sun Z. Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2 C crystals. ACS applied materials & interfaces 2015; 7 (31): 17510-17515. doi:10.1021/acsami.5b05401
  • [19] Zhang JJ, Dong S. Superconductivity of monolayer Mo2 C: The key role of functional groups. The Journal of chemical physics 2017; 146 (3): 034705. doi:10.1063/1.4974085
  • [20] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999; 59 (3): 1758. doi:10.1103/PhysRevB.59.1758
  • [21] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B 1993; 47 (1): 558. doi:10.1016/0022-3093(95)00355-X
  • [22] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters 1996; 77 (18): 3865. doi:10.1103/PhysRevLett.77.3865
  • [23] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996; 54 (16): 11169. doi:10.1103/PhysRevB.54.11169
  • [24] Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry 2006; 27 (15): 1787-1799. doi:10.1002/jcc.20495
  • [25] Khazaei M, Arai M, Sasaki T, Chung CY, Venkataramanan NS et al. Novel electronic and magnetic properties of two‐dimensional transition metal carbides and nitrides. Advanced Functional Materials 2013; 23 (17): 2185-2192. doi:10.1002/adfm.201202502
  • [26] Gao G, Ding G, Li J, Yao K, Wu M, Qian M. Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale 2016; 8 (16): 8986-8994. doi:10.1039/c6nr01333c
  • [27] Zhao S, Kang W, Xue J. Manipulation of electronic and magnetic properties of M2C (M= Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Applied Physics Letters 2014; 104 (13): 133106. doi:10.1063/1.4870515
APA AKGENÇ B (2019). Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. , 531 - 539. 10.3906/fiz-1907-1
Chicago AKGENÇ Berna Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. (2019): 531 - 539. 10.3906/fiz-1907-1
MLA AKGENÇ Berna Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. , 2019, ss.531 - 539. 10.3906/fiz-1907-1
AMA AKGENÇ B Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. . 2019; 531 - 539. 10.3906/fiz-1907-1
Vancouver AKGENÇ B Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. . 2019; 531 - 539. 10.3906/fiz-1907-1
IEEE AKGENÇ B "Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition." , ss.531 - 539, 2019. 10.3906/fiz-1907-1
ISNAD AKGENÇ, Berna. "Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition". (2019), 531-539. https://doi.org/10.3906/fiz-1907-1
APA AKGENÇ B (2019). Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. Turkish Journal of Physics, 43(5), 531 - 539. 10.3906/fiz-1907-1
Chicago AKGENÇ Berna Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. Turkish Journal of Physics 43, no.5 (2019): 531 - 539. 10.3906/fiz-1907-1
MLA AKGENÇ Berna Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. Turkish Journal of Physics, vol.43, no.5, 2019, ss.531 - 539. 10.3906/fiz-1907-1
AMA AKGENÇ B Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. Turkish Journal of Physics. 2019; 43(5): 531 - 539. 10.3906/fiz-1907-1
Vancouver AKGENÇ B Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition. Turkish Journal of Physics. 2019; 43(5): 531 - 539. 10.3906/fiz-1907-1
IEEE AKGENÇ B "Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition." Turkish Journal of Physics, 43, ss.531 - 539, 2019. 10.3906/fiz-1907-1
ISNAD AKGENÇ, Berna. "Two-dimensional $Ti_2C$ monolayer (MXene): surface functionalization, induced metal, semiconductor transition". Turkish Journal of Physics 43/5 (2019), 531-539. https://doi.org/10.3906/fiz-1907-1