Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry

Yıl: 2019 Cilt: 43 Sayı: 5 Sayfa Aralığı: 1472 - 1485 Metin Dili: İngilizce DOI: 10.3906/kim-1905-26 İndeks Tarihi: 11-05-2020

Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry

Öz:
A catechol-based benzoxazine copolymer is reported via a new approach using an oxazine-thiol reaction.The main chain benzoxazine precursor was obtained via the classic benzoxazine synthesis methodology using the raw chemicals catechol, formaldehyde, and 4,7,10-trioxa-1,13-tridecanediamine. The countercomponent was synthesized from poly(ethylene glycol) methyl ether via the Fischer esterification reaction. The obtained reactive catechol-based benzoxazine was then reacted in mild conditions with polymeric thiol precursor to obtain a copolymer structure. The precursors and the resulting structure were characterized by thermal and spectral analyses using DSC, TGA, FT-IR, 1 H NMR, and GPC. Film formation was also demonstrated with unreacted oxazine ring units in the copolymer, and the ring opening polymerization temperature was lower than that corresponding to the benzoxazine precursor.
Anahtar Kelime:

Konular: Kimya, Analitik Kimya, Uygulamalı Kimya, Organik Kimya, Tıbbi Mühendislik, Kimya Kimya, İnorganik ve Nükleer
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines - new high performance thermosetting resins: synthesis and properties. Progress in Polymer Science 2007; 32 (11): 1344-1391. doi: 10.1016/j.progpolymsci.2007.07.002
  • 2. Yagci Y, Kiskan B, Ghosh NN. Recent advancement on polybenzoxazine - a newly developed high performance thermoset. Journal of Polymer Science Part A: Polymer Chemistry 2009; 47 (21): 5565-5576. doi: 10.1002/pola.23597
  • 3. Arslan M, Kiskan B, Yagci Y. Post-modification of polybutadienes by photoinduced hydrogen abstraction from benzoxazines and their thermally activated curing. Macromolecules 2016; 49 (14): 5026-5032. doi: 10.1021/acs.macromol.6b01329
  • 4. Tasdelen MA, Kiskan B, Yagci Y. Photoinitiated free radical polymerization using benzoxazines as hydrogen donors. Macromolecular Rapid Communications 2006; 27 (18): 1539-1544. doi: 10.1002/marc.200600424
  • 5. Tasdelen MA, Durmaz H. Thermally curable polyoxanorbornene by ring opening metathesis polymerization. Macromolecular Chemistry and Physics 2011; 212 (19): 2121-2126. doi: 10.1002/macp.201100258
  • 6. Demir KD, Tasdelen MA, Uyar T, Kawaguchi AW, Sudo A et al. Synthesis of polybenzoxazine/clay nanocomposites by in situ thermal ring-opening polymerization using intercalated monomer. Journal of Polymer Science Part A: Polymer Chemistry 2011; 49 (19): 4213-4220. doi: 10.1002/pola.24863
  • 7. Taskin OS, Kiskan B, Yagci Y. Polybenzoxazine precursors as self-healing agents for polysulfones. Macromolecules 2013; 46 (22): 8773-8778. doi: 10.1021/ma4019153
  • 8. Sharma P, Kumar D, Roy PK. Microwave-assisted sustainable synthesis of telechelic poly(ethylene glycol)s with benzoxazine end groups. 2016; 1 (21): 6941-6947. doi: 10.1002/slct.201601226
  • 9. Dizman C, Altinkok C, Tasdelen MA. Synthesis of self-curable polysulfone containing pendant benzoxazine units via CuAAC click chemistry. Designed Monomers and Polymers 2017; 20 (1): 293-299. doi: 10.1080/15685551.2016.1257379
  • 10. Trejo-Machin A, Verge P, Puchot L, Quintana R. Phloretic acid as an alternative to the phenolation of aliphatic hydroxyls for the elaboration of polybenzoxazine. Green Chemistry 2017; 19 (21): 5065-5073. doi: 10.1039/C7GC02348K
  • 11. Brown EA, Rider DA. Pegylated polybenzoxazine networks with increased thermal stability from miscible blends of tosylated poly(ethylene glycol) and a benzoxazine monomer. Macromolecules 2017; 50 (17): 6468-6481. doi: 10.1021/acs.macromol.7b01457
  • 12. Van A, Chiou K, Ishida H. Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer 2014; 55 (6): 1443-1451. doi: 10.1016/j.polymer.2014.01.041
  • 13. Sini NK, Bijwe J, Varma IK. Renewable benzoxazine monomer from vanillin: synthesis, characterization, and studies on curing behavior. Journal of Polymer Science Part A: Polymer Chemistry 2014; 52 (1): 7-11. doi: 10.1002/pola.26981
  • 14. Calo E, Maffezzoli A, Mele G, Martina F, Mazzetto SE et al. Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chemistry 2007; 9 (7): 754-759. doi: 10.1039/b617180j
  • 15. Dayo AQ, Wang AR, Derradji M, Kiran S, Zegaoui A et al. Copolymerization of mono and difunctional benzoxazine monomers with bio-based phthalonitrile monomer: curing behaviour, thermal, and mechanical properties. Reactive & Functional Polymers 2018; 131: 156-163. doi: 10.1016/j.reactfunctpolym.2018.07.022
  • 16. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P. High performance bio-based benzoxazine networks from resorcinol and hydroquinone. European Polymer Journal 2016; 75: 486-494. doi: 10.1016/j.eurpolymj.2016.01.021
  • 17. Thirukumaran P, Shakila A, Muthusamy S. Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Advances 2014; 4 (16): 7959-7966. doi: 10.1039/c3ra46582a
  • 18. He Y, Gao S, Lu Z. A mussel-inspired polybenzoxazine containing catechol groups. Polymer 2018; 158: 53-58. doi: https://doi.org/10.1016/j.polymer.2018.10.046
  • 19. Xu H, Lu Z, Zhang G. Synthesis and properties of thermosetting resin based on urushiol. RSC Advances 2012; 2 (7): 2768-2772. doi: 10.1039/C2RA00829G
  • 20. Wang CF, Sun JQ, Liu XD, Sudo A, Endo T. Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chemistry 2012; 14 (10): 2799-2806. doi: 10.1039/c2gc35796h
  • 21. Lou YJ, Zhao ZX, Chen ZW, Dai ZH, Fu FY et al. Processability improvement of a 4-vinlyguiacol derived benzoxazine using reactive diluents. Polymer 2019; 160: 316-324. doi: 10.1016/j.polymer.2018.11.056
  • 22. Liu YL, Chou C I. High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science Part A: Polymer Chemistry 2005; 43 (21): 5267-5282. doi: 10.1002/pola.21023
  • 23. Kotzebue LRV, De Oliveira JR, Da Silva JB, Mazzetto SE, Ishida H et al. development of fully biobased highperformance bis-benzoxazine under environmentally friendly conditions. ACS Sustainable Chemistry & Engineering 2018; 6 (4): 5485-5494. doi: 10.1021/acssuschemeng.8b00340
  • 24. Oliveira JR, Kotzebue LRV, Mazzetto SE, Lomonaco D. Towards bio-based high-performance polybenzoxazines: agro-wastes as starting materials for BPA-free thermosets via efficient microwave-assisted synthesis. European Polymer Journal 2019; 116: 534-544. doi: https://doi.org/10.1016/j.eurpolymj.2019.04.014
  • 25. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P. Chavicol benzoxazine: ultrahigh Tg biobased thermoset with tunable extended network. European Polymer Journal 2016; 81: 337-346. doi: 10.1016/j.eurpolymj.2016.06.018
  • 26. Arslan M. Synthesis and characterization of novel bio-based benzoxazines from gallic acid with latent catalytic characteristics. Reactive and Functional Polymers 2019; 139. doi: 10.1016/j.reactfunctpolym.2019.03.011
  • 27. Gorodisher I, Devoe RJ, Webb RJ. Catalytic opening of lateral benzoxazine rings by thiols. In: Ishida H, Agag T, editors. Handbook of Benzoxazine Resins. Amsterdam, Netherlands: Elsevier, 2011, pp. 211-234.
  • 28. Semerci E, Kiskan B, Yagci Y. Thiol reactive polybenzoxazine precursors: a novel route to functional polymers by thiol-oxazine chemistry. European Polymer Journal 2015; 69: 636-641. doi: 10.1016/j.eurpolymj.2015.02.030
  • 29. Urbaniak T, Soto M, Liebeke M, Koschek K. Insight into the mechanism of reversible ring-opening of 1,3- benzoxazine with thiols. The Journal of Organic Chemistry 2017; 82 (8): 4050-4055. doi: 10.1021/acs.joc.6b02727
  • 30. Oie H, Mori A, Sudo A, Endo T. Polyaddition of bifunctional 1,3-benzoxazine and 2-methylresorcinol. Journal of Polymer Science Part A: Polymer Chemistry 2013; 51 (18): 3867-3872. doi: 10.1002/pola.26784
  • 31. Beyazkilic Z, Kahveci MU, Aydogan B, Kiskan B, Yagci Y. Synthesis of polybenzoxazine precursors using thiols: simultaneous thiol-ene and ring-opening reactions. Journal of Polymer Science Part A: Polymer Chemistry 2012; 50 (19): 4029-4036. doi: 10.1002/pola.26202
  • 32. Bektas S, Kiskan B, Orakdogen N, Yagci Y. Synthesis and properties of organo-gels by thiol-benzoxazine chemistry. Polymer 2015; 75: 44-50. doi: 10.1016/j.polymer.2015.08.026
  • 33. Musa A, Kiskan B, Yagci Y. Thiol-benzoxazine chemistry as a novel Thiol-X reaction for the synthesis of block copolymers. Polymer 2014; 55 (22): 5550-5556. doi: 10.1016/j.polymer.2014.06.076
  • 34. Lowe AB. Thiol-yne ’click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer 2014; 55 (22): 5517-5549. doi: 10.1016/j.polymer.2014.08.015
  • 35. Ye Q, Zhou F, Liu WM. Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews 2011; 40 (7): 4244-4258. doi: 10.1039/c1cs15026j
  • 36. Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D. Catechol-based biomimetic functional materials. Advanced Materials 2013; 25 (5): 653-701. doi: 10.1002/adma.201202343
  • 37. Higginson CJ, Malollari KG, Xu Y, Kelleghan AV, Ricapito NG et al. Bioinspired design provides high-strength benzoxazine structural adhesives. Angewandte Chemie International Edition 2019; 58 (35): 12271-12279. doi: 10.1002/anie.201906008
  • 38. Li L, Li Y, Luo XF, Deng JP, Yang WT. Helical poly(N-propargylamide)s with functional catechol groups: synthesis and adsorption of metal ions in aqueous solution. Reactive & Functional Polymers 2010; 70 (12): 938-943. doi: 10.1016/j.reactfunctpolym.2010.09.006
  • 39. Wang J, Liu CS, Lu X, Yin M. Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. Biomaterials 2007; 28 (23): 3456-3468. doi: 10.1016/j.biomaterials.2007.04.009
  • 40. Lee BP, Chao CY, Nunalee FN, Motan E, Shull KR et al. Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules 2006; 39 (5): 1740-1748. doi: 10.1021/ma0518959
  • 41. Yuan SJ, Wan D, Liang B, Pehkonen SO, Ting YP et al. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)- stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir 2011; 27 (6): 2761-2774. doi: 10.1021/la104442f
  • 42. Wang JJ, Tahir MN, Kappl M, Tremel W, Metz N et al. Influence of binding-site density in wet bioadhesion. Advanced Materials 2008; 20 (20): 3872-3876. doi: 10.1002/adma.200801140
  • 43. Shao H, Stewart RJ. Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Advanced Materials 2010; 22 (6): 729-733. doi: 10.1002/adma.200902380
  • 44. White JD, Wilker JJ. Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules 2011; 44 (13): 5085-5088. doi: 10.1021/ma201044x
  • 45. Chung HY, Glass P, Pothen JM, Sitti M, Washburn NR. Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning. Biomacromolecules 2011; 12 (2): 342-347. doi: 10.1021/bm101076e
  • 46. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 2011; 12 (7): 2653-2659. doi: 10.1021/bm200464x
  • 47. Adkins CT, Dobish JN, Brown CS, Mayrsohn B, Hamilton SK et al. High relaxivity MRI imaging reagents from bimodal star polymers. Polymer Chemistry 2012; 3 (2): 390-398. doi: 10.1039/c1py00474c
  • 48. Saxer S, Portmann C, Tosatti S, Gademann K, Zurcher S et al. Surface assembly of catechol-functionalized poly (l-lysine)-graft-poly (ethylene glycol) copolymer on titanium exploiting combined electrostatically driven selforganization and biomimetic strong adhesion. Macromolecules 2009; 43 (2): 1050-1060. doi: 10.1021/ma9020664
  • 49. Han H, Wu JF, Avery CW, Mizutani M, Jiang XM et al. Immobilization of amphiphilic polycations by catechol functionality for antimicrobial coatings. Langmuir 2011; 27 (7): 4010-4019. doi: 10.1021/la1046904
APA ARSLAN M (2019). Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. , 1472 - 1485. 10.3906/kim-1905-26
Chicago ARSLAN Mustafa Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. (2019): 1472 - 1485. 10.3906/kim-1905-26
MLA ARSLAN Mustafa Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. , 2019, ss.1472 - 1485. 10.3906/kim-1905-26
AMA ARSLAN M Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. . 2019; 1472 - 1485. 10.3906/kim-1905-26
Vancouver ARSLAN M Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. . 2019; 1472 - 1485. 10.3906/kim-1905-26
IEEE ARSLAN M "Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry." , ss.1472 - 1485, 2019. 10.3906/kim-1905-26
ISNAD ARSLAN, Mustafa. "Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry". (2019), 1472-1485. https://doi.org/10.3906/kim-1905-26
APA ARSLAN M (2019). Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. Turkish Journal of Chemistry, 43(5), 1472 - 1485. 10.3906/kim-1905-26
Chicago ARSLAN Mustafa Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. Turkish Journal of Chemistry 43, no.5 (2019): 1472 - 1485. 10.3906/kim-1905-26
MLA ARSLAN Mustafa Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. Turkish Journal of Chemistry, vol.43, no.5, 2019, ss.1472 - 1485. 10.3906/kim-1905-26
AMA ARSLAN M Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. Turkish Journal of Chemistry. 2019; 43(5): 1472 - 1485. 10.3906/kim-1905-26
Vancouver ARSLAN M Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry. Turkish Journal of Chemistry. 2019; 43(5): 1472 - 1485. 10.3906/kim-1905-26
IEEE ARSLAN M "Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry." Turkish Journal of Chemistry, 43, ss.1472 - 1485, 2019. 10.3906/kim-1905-26
ISNAD ARSLAN, Mustafa. "Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry". Turkish Journal of Chemistry 43/5 (2019), 1472-1485. https://doi.org/10.3906/kim-1905-26