KEMAL ADEM
(Tokat Gaziosmanpaşa Üniversitesi)
MAHMUT HEKİM
(Tokat Gaziosmanpaşa Üniversitesi)
SELİM DEMİR
(Tokat Gaziosmanpaşa Üniversitesi)
Yıl: 2019Cilt: 27Sayı: 1ISSN: 1300-0632 / 1300-0632Sayfa Aralığı: 499 - 515İngilizce

88 0
Detection of hemorrhage in retinal images using linear classifiers and iterative thresholding approaches based on firefly and particle swarm optimization algorithms
We propose a novel iterative thresholding approach based on firefly and particle swarm optimization to be used for the detection of hemorrhages, one of the signs of diabetic retinopathy disease. This approach consists of the enhancement of the image using basic preprocessing methods, the segmentation of vessels with the help of Gabor and Top-hat transformation for the removal of the vessels from the image, the determination of the number of regions with hemorrhages and pixel counts in these regions using firefly algorithm (FFA) and particle swarm optimization algorithm (PSOA)-based iterative thresholding, and the detection of hemorrhages with the help of a support vector machine (SVM) and linear regression (LR)-based classifier. In the preprocessing step, color space selection, brightness and contrast adjustment, and adaptive histogram equalization are applied to enhance retinal images, respectively. In the step of segmentation, blood vessels are detected by using Gabor and Top-hat transformations and are removed from the image to avoid confusion with hemorrhagic regions in the retinal image. In the iterative thresholding step, the number of hemorrhagic regions and pixel counts in these regions are determined by using an iterative thresholding approach that generates different thresholding values with the FFA/PSOA. In the classification step, the hemorrhagic regions and pixel counts obtained by the iterative thresholding are used as inputs in the LR/SVM-based classifier. PSOA-based iterative thresholding and the SVM classifier achieved 96.7% sensitivity, 91.4% specificity, and 94.1% accuracy for hemorrhage detection. Finally, the experiments show that the correct classification rates and time performances of the PSOA-based iterative thresholding algorithm are better than those of the FFA in hemorrhage detection. In addition, the proposed approach can be used as a diagnostic decision support system for detecting hemorrhages with high success rate.
Fen > Mühendislik > Bilgisayar Bilimleri, Yapay Zeka
Fen > Mühendislik > Bilgisayar Bilimleri, Sibernitik
Fen > Mühendislik > Bilgisayar Bilimleri, Donanım ve Mimari
Fen > Mühendislik > Bilgisayar Bilimleri, Bilgi Sistemleri
Fen > Mühendislik > Bilgisayar Bilimleri, Yazılım Mühendisliği
Fen > Mühendislik > Bilgisayar Bilimleri, Teori ve Metotlar
Fen > Mühendislik > Mühendislik, Elektrik ve Elektronik
DergiAraştırma MakalesiErişime Açık
  • [1] Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Opht 1984; 102: 527-532.
  • [2] Yau JW, Rogers SL, Kawasaki R. Global prevalence and major risk factors of diabetic retinopathy. Diab Care 2012; 35: 556-564.
  • [3] Hiller R, Sperduto RD, Podgor MJ, Ferris FL, Wilson PW. Diabetic retinopathy and cardiovascular disease in type II diabetics. The Framingham Heart Study and the Framingham Eye Study. Am J Epid 1988; 128: 402-409.
  • [4] Klein R, Klein BE, Moss SE, Cruickshanks KJ. Association of ocular disease and mortality in a diabetic population. Arch Opht 1999; 117: 1487-1495.
  • [5] Gönül Ş, Kadıoğlu E. Retina sinir lifi tabakası ve diyabet. Tıp Araşt Derg 2013; 11: 87-93 (in Turkish).
  • [6] Spencer T, Olson JA, McHardy KC, Sharp PF, Forrester JV. An image processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput Biomed Res 1996; 29: 284-302.
  • [7] Frame AJ, Undrill PE, Cree MJ, Olson JA, McHardy KC, Sharp PF, Forrester JV. A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput Biolgy Med 1998; 28: 225-238.
  • [8] Streeter L, Cree MJ. Microaneurysm detection in colour fundus images. Img Vsn Comp 2003; 280-284.
  • [9] Kande GB, Savithri TS, Subbaiah PV. Automatic detection of microaneurysms and hemorrhages in digital fundus images. J Digit Imaging 2010; 23: 430-437.
  • [10] Li Q, You J, Zhang D. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Exp Syst Appl 2012; 39: 7600-7610.
  • [11] Zhang X, Fan G. Retinal spot lesion detection using adaptive multiscale morphological processing. Lect Notes Comp Sci 2006; 4292: 490-501.
  • [12] Shivaram JM, Patil R, Anarind HS. Automated detection and quantification of hemorrhages in diabetic retinopathy images using image arithmetic and morphological methods. Int J Recent Trends Eng 2009; 2: 174-176.
  • [13] Walter T, Massin P, Erginay A, Ordonez R, Jeulin C, Klein JC. Automatic detection of microaneurysms in color fundus images. Med Img Anal 2007; 11: 555-566.
  • [14] Kleawsirikul N, Gulati S, Uyyanonvara B. Automated retinal hemorrhage detection using morphological top hat and rule-based classification. In: 3rd International Conference on Intelligent Computing Systems; 2013. pp. 39-43.
  • [15] Rosas-Romero R, Martínez-Carballido J, Hernández-Capistrán J, Uribe LJ. A method to assist in the diagnosis of early diabetic retinopathy: image processing applied to detection of microaneurysms in fundus images. Comput Med Img Graph 2015; 44: 41-53.
  • [16] Quellec G, Lamard M, Josselin PM, Cazuguel G, Cochener B, Roux C. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE T Med Imaging 2008; 27: 1230-1241.
  • [17] Akram MU, Khan SA. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J Med Sys 2012; 36: 3151-3162.
  • [18] Ramlugun GS, Nagarajan VK, Chakraborty C. Small retinal vessels extraction towards proliferative diabetic retinopathy screening. Exp Syst Appl 2012; 39: 1141-1146.
  • [19] Akram MU, Khalid S, Khan SA. Identification and classification of microaneurysms for early detection of diabetic retinopathy. Patt Recogn 2013; 1: 107-116.
  • [20] Akram MU, Khalid S, Tariq A, Khan SA, Azam F. Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Bio Med 2014; 45: 161-171.
  • [21] Sopharak A, Uyyanonvara B, Barman S. Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images. Comput Med Img Graph 2013; 37: 394-402.
  • [22] Raja SS, Vasuki S. Screening diabetic retinopathy in developing countries using retinal images. App Med Inf 2015; 36: 13-22.
  • [23] Gardner GG, Keating D, Williamson TH, Elliott AT. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Brit J Ophthalmol 1996; 80: 940-944.
  • [24] Zhou L, Li P, Yu Q, Qiao Y, Yang J. Automatic hemorrhage detection in color fundus images based on gradual removal of vascular branches. In: Image Process Conference (ICIP); 2016. pp. 399-403.
  • [25] van Grinsven MJ, van Ginneken B, Hoyng CB, Theelen T, Sánchez CI. Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE T Med Img 2016; 35: 1273-1284.
  • [26] Kaur N, Kaur J, Accharya M, Gupta S. Automated detection of red lesions in the presence of blood vessels in retinal fundus images using morphological operations. In: ICPEICES; 2016. pp. 1-4.
  • [27] Mumtaz R, Hussain M, Sarwar S, Khan K, Mumtaz S, Mumtaz M. Automatic detection of retinal hemorrhages by exploiting image processing techniques for screening retinal diseases in diabetic patients. Int J Diabetes Dev C 2018; 38: 80-87.
  • [28] Lam C, Yu C, Huang L, Rubin D. Retinal lesion detection with deep learning using image patches. Invest Opht Vis Sci 2018; 59: 590-596.
  • [29] Neto LC, Ramalho GL, Neto JFR, Veras RM, Medeiros FN. An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Exp Syst Appl 2017; 78: 182-192.
  • [30] Srivastava R, Duan L, Wong DW, Liu J, Wong TY. Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels. Comput Bio Med 2017; 138: 83-91.
  • [31] Pal R, Pal K. A review on image segmentation techniques. Pattern Recogn 1993; 26: 1277-1294.
  • [32] Gonzales RC, Woods RE. Digitial Image Processing. Upper Saddle River, NJ, USA: Prentice Hall, 2002.
  • [33] Yoon H, Han Y, Hahn H. Image contrast enhancement based sub-histogram equalization technique without overequalization noise. International Journal of Computational Science and Engineering 2009; 3: 1-10.
  • [34] Petkov N, Wieling BM. Gabor filter augmented with surround inhibition for improved contour detection by texture suppression. Groningen, the Netherlands: Institute for Mathematics and Computing Science, 2004.
  • [35] Yavuz Z, Köse C. Retinal blood vessel segmentation using Gabor filter and top-hat transform. In: Signal Processing and Communications Conference (SIU); 2011. pp. 546-549.
  • [36] Yang XS. Nature-inspired Metaheuristic Algorithms. New York, NY, USA: Luniver Press, 2008.
  • [37] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Micro Machine and Human Science MHS’95; 1995. pp. 39-43.
  • [38] Chapra SC, Canale RP. Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler. Ankara, Turkey: Literatür Yayıncılık, 2003 (in Turkish).
  • [39] Vapnik V. The support vector method of function estimation. In: In: Suykens JAK, Vandewalle J, editors. Nonlinear Modeling. New York, NY, USA: Springer, 1998. pp. 55-85.
  • [40] Osuna EE, Freund R, Girosi F. Support Vector Machines: Training and Applications. Cambridge, MA, USA: MIT, 1997.
  • [41] Bishop CM. Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press, 1995.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.