Yıl: 2019 Cilt: 49 Sayı: 5 Sayfa Aralığı: 1582 - 1589 Metin Dili: İngilizce DOI: 10.3906/sag-1901-15 İndeks Tarihi: 15-05-2020

Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions

Öz:
Background/aim: Losartan, an antihypertensive drug, is highly preferred in patients with diabetes mellitus (DM) and hypertensionbecause of its retarding effect on diabetic nephropathy. In this study, we investigated the potential therapeutic effect of different doses oflosartan on hepatic damage in a streptozotocin (STZ, 50 mg/kg)-induced DM model in rats.Materials and methods: In this study, five different groups were formed: control, DM, low-dose losartan (5 mg/kg), mid-dose losartan(20 mg/kg), and high-dose losartan (80 mg/kg). Liver tissues of experimental groups were evaluated immunohistochemically forTUNEL, iNOS, eNOS, VEGF, and NF-κB pathways. In addition to immunohistochemical analysis, analyses of SOD and MDA, whichare oxidative stress markers, were also performed and the results were evaluated together.Results: When biochemical and immunohistochemical findings were evaluated together, it was found that the results obtained from themid-dose losartan group were closer to those of the control than the other groups.Conclusion: This study indicated that mid-dose losartan administration may have a therapeutic effect by inhibiting apoptosis andregulating iNOS, eNOS, VEGF, and NF-κB protein expressions in DM-induced hepatic damage.
Anahtar Kelime:

Konular: Cerrahi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Shi GJ, Li ZM, Zheng J, Chen J, Han XX et al. Diabetes associated with male reproductive system damages: onset of presentation, pathophysiological mechanisms and drug intervention. Biomedicine & Pharmacotherapy 2017; 90: 562-574. doi: 10.1016/j.biopha.2017.03.074
  • 2. Papadakis MA, McPhee SJ, Rabow MW. Current Medical Diagnosis & Treatment. 56th ed. San Francisco, CA, USA: McGraw-Hill Education; 2017.
  • 3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33 (1): 62-69. doi: 10.2337/dc10-S062
  • 4. Ziamajidi N, Khaghani S, Hassanzadeh G, Vardasbi S, Ahmadian S et al. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/ non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food and Chemical Toxicology 2013; 58: 198- 209. doi: 10.1016/j.fct.2013.04.018
  • 5. Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chemical Society Reviews 2014; 43: 6814- 6838. doi: 10.1039/c3cs60467e
  • 6. Iwakiri Y, Kim MY. Nitric oxide in liver diseases. Trends in Pharmacological Sciences 2015; 36 (8): 524-536. doi: 10.1016/j. tips.2015.05.001
  • 7. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochemical Journal 1994; 298 (2): 249-258. doi: 10.1042/ bj2980249
  • 8. Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway - evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver International 2012; 32 (4): 531-543. doi: 10.1111/j.1478-3231.2012.02755.x
  • 9. Abdelmegeed MA, Song BJ. Functional roles of protein nitration in acute and chronic liver diseases. Oxidative Medicine and Cellular Longevity 2014; 2014: 149627. doi: 10.1155/2014/149627
  • 10. Madar Z, Kalet-Litman S, Stark AH. Inducible nitric oxide synthase activity and expression in liver and hepatocytes of diabetic rats. Pharmacology 2005; 73 (2): 106-112. doi: 10.1159/000081952
  • 11. Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo AM. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration. Redox Biology 2016; 7: 78-87. doi: 10.1016/j. redox.2015.11.011
  • 12. Kroll J, Waltenberger J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochemical and Biophysical Research Communications 1998; 252: 743-746. doi: 10.1006/bbrc.1998.9719
  • 13. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 2003; 52 (9): 1347-1354. doi: 10.1136/gut.52.9.1347
  • 14. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW et al. IKK-β links inflammation to obesity-induced insulin resistance. Nature Medicine 2005; 11 (2): 191-198. doi: 10.1038/nm1185
  • 15. Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Universty Medical Journal 2016; 16 (2): 132-141. doi: 10.18295/ squmj.2016.16.02.002
  • 16. Ziamajidi N, Behrouj H, Abbasalipourkabir R, Lotfi F. Ameliorative effects of Allium sativum extract on iNOS gene expression and NO production in liver of streptozotocin + nicotinamide-induced diabetic rats. Indian Journal of Clinical Biochemistry 2018; 33 (2): 147-153. doi: 10.1007/s12291-017- 0656-3
  • 17. Cohn JN. Role of the renin-angiotensin system in cardiovascular disease. Cardiovascular Drugs and Therapy 2010; 24 (4): 341- 344. doi: 10.1007/s10557-010-6230-3
  • 18. Sookoian S, Fernández MA, Castaño G. Effects of six months losartan administration on liver fibrosis in chronic hepatitis C patients: a pilot study. World Journal of Gastroenterology 2005; 11 (48): 7560-7563. doi: 10.3748/wjg.v11.i48.7560
  • 19. Yigitturk G, Acara AC, Erbas O, Oltulu F, Yavasoglu NUK et al. The antioxidant role of agomelatine and gallic acid on oxidative stress in STZ induced type I diabetic rat testes. Biomedicine & Pharmacotherapy 2017; 87: 240-246. doi: 10.1016/j. biopha.2016.12.102
  • 20. Acikgoz E, Aktug H, Yigitturk G, Demir K, Guven U et al. Repression of the Notch pathway prevents liver damage in streptozotocin-induced diabetic mice. Folia Histochemica et Cytobiologica 2017; 55 (3): 140-148. doi: 10.5603/FHC. a2017.0014
  • 21. Xu Q, Wang L, Luo J, Shi D, Luo J et al. The hot and potential targets of type 2 diabetes mellitus treatment in recent decade. Current Drug Targets 2017; 19 (1): 55-69. doi: 10.2174/138945 0118666170307111714
  • 22. Arab Sadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, Mohseni R. Garlic (Allium sativum) increases SIRT1 and SIRT2 gene expressions in the kidney and liver tissues of STZand STZ+niacinamide-induced diabetic rats. Journal of Basic and Clinical Physiology and Pharmacology 2018; 29 (5): 463- 467. doi: 10.1515/jbcpp-2017-0079
  • 23. Chen Z, Wang C, Pan Y, Gao X, Chen H. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food and Function 2018; 9 (1): 426-439. doi: 10.1039/c7fo00983f
  • 24. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003; 108 (16): 1912-1916. doi: 10.1161/01.CIR.0000093660.86242.BB
  • 25. Spitaler MM, Graier WF. Vascular targets of redox signalling in diabetes mellitus. Diabetologia 2002; 45 (4): 476-494. doi: 10.1007/s00125-002-0782-0
  • 26. Lin HI, Wang D, Leu FJ, Chen CF, Chen HI. Ischemia and reperfusion of liver induces eNOS and iNOS expression: effects of a NO donor and NOS inhibitor. Chinese Journal of Physiology 2004; 47 (3): 121-127.
  • 27. Cottart CH, Do L, Blanc MC, Vaubourdolle M, Descamps G et al. Hepatoprotective effect of endogenous nitric oxide during ischemia-reperfusion in the rat. Hepatology 1999; 29 (3): 809- 813. doi: 10.1002/hep.510290317
  • 28. Hines IN, Kawachi S, Harada H, Pavlick KP, Hoffman JM et al. Role of nitric oxide in liver ischemia and reperfusion injury. Molecular and Cellular Biochemistry 2002; 234 (1): 229-237. doi: 10.1023/A:1015952926016
  • 29. Ingaramo PI, Ronco MT, Francés DEAA, Monti JA, Pisani GB et al. Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Molecular Immunology 2011; 48 (12-13): 1397-1407. doi: 10.1016/j. molimm.2011.03.015
  • 30. Jeddi S, Khalifi S, Ghanbari M, Bageripour F, Ghasemi A. Effects of nitrate intake on myocardial ischemia-reperfusion injury in diabetic rats. Arquivos Brasileiros de Cardiologia 2016; 107 (4): 339-347. doi: 10.5935/abc.20160137
  • 31. Manucha W, Oliveros L, Carrizo L, Seltzer A, Vallés P. Losartan modulation on NOS isoforms and COX-2 expression in early renal fibrogenesis in unilateral obstruction. Kidney International 2004; 65 (6): 2091-2107. doi: 10.1111/j.1523- 1755.2004.00643.x
  • 32. Matsuhisa S, Otani H, Okazaki T, Yamashita K, Akita Y et al. N-Acetylcysteine abolishes the protective effect of losartan against left ventricular remodeling in cardiomyopathy hamster. Antioxidant & Redox Signaling 2008; 10 (12): 1999-2008. doi: 10.1089/ars.2008.2069
  • 33. Djordjevic B, Cvetkovic T, Stoimenov TJ, Despotovic M, Zivanovic S et al. Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. European Journal of Pharmacology 2018; 833: 290-297. doi: 10.1016/j.ejphar.2018.06.011
  • 34. Liu F, Xia M, Xu A. Expression of VEGF, iNOS, and eNOS is increased in cochlea of diabetic rat. Acta Oto-laryngologica 2008; 128 (11): 1178-1186. doi: 10.1080/00016480801901774
  • 35. Lee MY, Shim MS, Kim BH, Hong SW, Choi R et al. Effects of spironolactone and losartan on diabetic nephropathy in a type 2 diabetic rat model. Diabetes & Metabolism Journal 2011; 35 (2): 130-137. doi: 10.4093/dmj.2011.35.2.130
  • 36. Kim NH, Oh JH, Seo JA, Lee KW, Kim SG et al. Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy. Kidney International 2005; 67 (1): 167-177. 10.1111/j.1523-1755.2005.00067.x
  • 37. Kamper M, Tsimpoukidi O, Chatzigeorgiou A, Lymberi M, Kamper EF. The antioxidant effect of angiotensin II receptor blocker, losartan, in streptozotocin-induced diabetic rats. Translational Research 2010; 156 (1): 26-36. doi: 10.1016/j. trsl.2010.05.004
  • 38. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2017; 2: 17023. doi: 10.1038/sigtrans.2017.23
  • 39. Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacological Reports 2009; 61 (4): 595-603. doi: 10.1016/S1734- 1140(09)70111-2
  • 40. Martínez-Flórez S, Gutiérrez-Fernández B, Sánchez-Campos S, González-Gallego J, Tuñón MJ. Quercetin attenuates nuclear factor-κB activation and nitric oxide production in interleukin1β-activated rat hepatocytes. Journal of Nutrition 2005; 135 (6): 1359-1365. doi: 10.1093/jn/135.6.1359
  • 41. Nasiri A, Ziamajidi N, Abbasalipourkabir R, Goodarzi MT, Saidijam M et al. Beneficial effect of aqueous garlic extract on inflammation and oxidative stress status in the kidneys of type 1 diabetic rats. Indian Journal of Clinical Biochemistry 2017; 32 (3): 329-336. doi: 10.1007/s12291-016-0621-6
  • 42. Francés DE, Ronco MT, Monti JA, Ingaramo PI, Pisani GB et al. Hyperglycemia induces apoptosis in rat liver through the increase of hydroxyl radical: new insights into the insulin effect. Journal of Endocrinology 2010; 205 (2): 187-200. doi: 10.1677/JOE-09-0462
  • 43. Oyenihi OR, Brooks NL, Oguntibeju OO. Effects of kolaviron on hepatic oxidative stress in streptozotocin induced diabetes. BMC Complementary and Alternative Medicine 2015; 15: 236. doi: 10.1186/s12906-015-0760-y
  • 44. Yu SY, Qi R, Zhao H. Losartan reverses glomerular podocytes injury induced by AngII via stabilizing the expression of GLUT1. Molecular Biology Reports 2013; 40 (11): 6295-6301. doi: 10.1007/s11033-013-2742-9
  • 45. Silva KC, Rosales MAB, Biswas SK, Lopes de Faria JB, Lopes de Faria JM. Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes 2009; 58 (6): 1382-1390. doi: 10.2337/db09-0166
  • 46. Guo G, Cheng X, Fu R. Losartan inhibits nuclear factor-κB activation induced by small, dense LDL cholesterol particles in human umbilical vein endothelial cells. Current Therapeutic Research, Clinical and Experimental 2014; 76: 17-20. doi: 10.1016/j.curtheres.2013.11.006
APA OLTULU F, BUHUR A, Gürel Ç, KUŞÇU G, DAĞDEVİREN M, KARABAY YAVAŞOĞLU N, KÖSE T, YAVAŞOĞLU A (2019). Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. , 1582 - 1589. 10.3906/sag-1901-15
Chicago OLTULU Fatih,BUHUR Aylin,Gürel Çevik,KUŞÇU Gökçe Ceren,DAĞDEVİREN Melih,KARABAY YAVAŞOĞLU Nefise Ülkü,KÖSE Timur,YAVAŞOĞLU Altuğ Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. (2019): 1582 - 1589. 10.3906/sag-1901-15
MLA OLTULU Fatih,BUHUR Aylin,Gürel Çevik,KUŞÇU Gökçe Ceren,DAĞDEVİREN Melih,KARABAY YAVAŞOĞLU Nefise Ülkü,KÖSE Timur,YAVAŞOĞLU Altuğ Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. , 2019, ss.1582 - 1589. 10.3906/sag-1901-15
AMA OLTULU F,BUHUR A,Gürel Ç,KUŞÇU G,DAĞDEVİREN M,KARABAY YAVAŞOĞLU N,KÖSE T,YAVAŞOĞLU A Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. . 2019; 1582 - 1589. 10.3906/sag-1901-15
Vancouver OLTULU F,BUHUR A,Gürel Ç,KUŞÇU G,DAĞDEVİREN M,KARABAY YAVAŞOĞLU N,KÖSE T,YAVAŞOĞLU A Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. . 2019; 1582 - 1589. 10.3906/sag-1901-15
IEEE OLTULU F,BUHUR A,Gürel Ç,KUŞÇU G,DAĞDEVİREN M,KARABAY YAVAŞOĞLU N,KÖSE T,YAVAŞOĞLU A "Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions." , ss.1582 - 1589, 2019. 10.3906/sag-1901-15
ISNAD OLTULU, Fatih vd. "Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions". (2019), 1582-1589. https://doi.org/10.3906/sag-1901-15
APA OLTULU F, BUHUR A, Gürel Ç, KUŞÇU G, DAĞDEVİREN M, KARABAY YAVAŞOĞLU N, KÖSE T, YAVAŞOĞLU A (2019). Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. Turkish Journal of Medical Sciences, 49(5), 1582 - 1589. 10.3906/sag-1901-15
Chicago OLTULU Fatih,BUHUR Aylin,Gürel Çevik,KUŞÇU Gökçe Ceren,DAĞDEVİREN Melih,KARABAY YAVAŞOĞLU Nefise Ülkü,KÖSE Timur,YAVAŞOĞLU Altuğ Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. Turkish Journal of Medical Sciences 49, no.5 (2019): 1582 - 1589. 10.3906/sag-1901-15
MLA OLTULU Fatih,BUHUR Aylin,Gürel Çevik,KUŞÇU Gökçe Ceren,DAĞDEVİREN Melih,KARABAY YAVAŞOĞLU Nefise Ülkü,KÖSE Timur,YAVAŞOĞLU Altuğ Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. Turkish Journal of Medical Sciences, vol.49, no.5, 2019, ss.1582 - 1589. 10.3906/sag-1901-15
AMA OLTULU F,BUHUR A,Gürel Ç,KUŞÇU G,DAĞDEVİREN M,KARABAY YAVAŞOĞLU N,KÖSE T,YAVAŞOĞLU A Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. Turkish Journal of Medical Sciences. 2019; 49(5): 1582 - 1589. 10.3906/sag-1901-15
Vancouver OLTULU F,BUHUR A,Gürel Ç,KUŞÇU G,DAĞDEVİREN M,KARABAY YAVAŞOĞLU N,KÖSE T,YAVAŞOĞLU A Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions. Turkish Journal of Medical Sciences. 2019; 49(5): 1582 - 1589. 10.3906/sag-1901-15
IEEE OLTULU F,BUHUR A,Gürel Ç,KUŞÇU G,DAĞDEVİREN M,KARABAY YAVAŞOĞLU N,KÖSE T,YAVAŞOĞLU A "Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions." Turkish Journal of Medical Sciences, 49, ss.1582 - 1589, 2019. 10.3906/sag-1901-15
ISNAD OLTULU, Fatih vd. "Mid-dose losartan mitigates diabetes-induced hepatic damage by regulating iNOS, eNOS, VEGF, and NF-κB expressions". Turkish Journal of Medical Sciences 49/5 (2019), 1582-1589. https://doi.org/10.3906/sag-1901-15