Yıl: 2020 Cilt: 28 Sayı: 3 Sayfa Aralığı: 1422 - 1441 Metin Dili: İngilizce DOI: 10.3906/elk-1907-8 İndeks Tarihi: 27-05-2020

Deep neural network based m-learning model for predicting mobile learners’ performance

Öz:
The use of deep learning (DL) techniques for mobile learning is an emerging field aimed at developing methodsfor finding mobile learners’ learning behavior and exploring important learning features. The learning features (learningtime, learning location, repetition rate, content types, learning performance, learning time duration, and so on) act asfuel to DL algorithms based on which DL algorithms can classify mobile learners into different learning groups. In thisstudy, a powerful and efficient m-learning model is proposed based on DL techniques to model the learning process ofm-learners. The proposed m-learning model determines the impact of independent learning features on the dependentfeature i.e. learners’ performance. The m-learning model dynamically and intuitively explores the weights of optimumlearning features on learning performance for different learners in their learning environment. Then it split learnersinto different groups based on features differences, weights, and interrelationships. Because of the high accuracy of theDL technique, it was used to classify learners into five different groups whereas random forest (RF) ensemble methodwas used in determining each feature importance in making adaptive m-learning model. Our experimental study alsorevealed that the m-learning model was successful in helping m-learners in increasing their performance and taking theright decision during the learning flow.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik Bilgisayar Bilimleri, Yazılım Mühendisliği Bilgisayar Bilimleri, Sibernitik Bilgisayar Bilimleri, Bilgi Sistemleri Bilgisayar Bilimleri, Donanım ve Mimari Bilgisayar Bilimleri, Teori ve Metotlar Bilgisayar Bilimleri, Yapay Zeka
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Mukhopadhyay S. Advanced Data Analytics Using Python: With Machine Learning, Deep Learning and NLP Examples. Apress, NY, USA: Springer, 2018. doi: 10.1007/978-1-4842-3450-1
  • [2] Schmidhuber J. Deep learning in neural networks: an overview. Neural networks 2015; 61 : 85-117. doi: 10.1016/j.neunet.2014.09.003
  • [3] Hsu T, Chiou C, Tseng J, Hwang G. Development and evaluation of an active learning support system for context-aware ubiquitous learning. IEEE Transactions on Learning Technologies 2015; 9 (1): 37-45. doi: 10.1109/TLT.2015.2439683
  • [4] Virtanen M, Haavisto E, Liikanen E, Kääriäinen M. Ubiquitous learning environments in higher education: a scoping literature review. Education and Information Technologies 2018; 23(2): 985-998. doi: 10.1007/s10639-017-9646-6
  • [5] Amara S, Macedo J, Bendella F, Santos A. Group formation in mobile computer supported collaborative learning contexts: a systematic literature review. Journal of Educational Technology & Society 2016; 19 (2): 258-273.
  • [6] Hsu Y, Ching Y. A review of models and frameworks for designing mobile learning experiences and environments. Canadian Journal of Learning and Technology 2015; 14 (3): 12-24. doi: 10.21432/T2V616
  • [7] Sun G, Shen J. Facilitating social collaboration in mobile cloud-based learning: A teamwork as a service (TaaS) approach. IEEE Transactions on Learning Technologies 2014; 7 (3): 207-220. doi: 10.1109/TLT.2014.2340402
  • [8] Jadhav S, Channe H. Comparative study of K-NN, naive Bayes and decision tree classification techniques. International Journal of Science and Research (IJSR) 2016; 5 (1): 1842-1845. doi: 10.21275/v5i1.NOV153131
  • [9] Do CB, Batzoglou S. What is the expectation maximization algorithm? Nature Biotechnology 2008; 26 (8): 897. doi: 10.1038/nbt1406
  • [10] Suthaharan S. Support vector machine. In: Ramesh S (editor). Machine learning models and algorithms for big data classification. Boston, MA, USA: Springer, 2016, pp. 207-235. doi: 10.1007/978-1-4899-7641-3_9
  • [11] Adeniyi D, Wei Z, Yongquan Y. Automated web usage data mining and recommendation system using KNearest Neighbor (KNN) classification method. Applied Computing and Informatics 2016; 12 (1): 90-108. doi: 10.1016/j.aci.2014.10.001
  • [12] Ciolacu M, Tehrani A, Beer R, Popp H. Education 4.0 Fostering student’s performance with machine learning methods. In: 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME); Constanta, Romania; 2017. pp. 438-443. doi: 10.1109/SIITME.2017.8259941
  • [13] Baradwaj B, Pal S. Mining educational data to analyze students’ performance. International Journal of Advanced Computer Science and Applications 2012; 2 (6): 63-69. doi: 10.14569/IJACSA.2011.020609
  • [14] Nanda S, Panda G. Design of computationally efficient density-based clustering algorithms. Data & Knowledge Engineering 2015; 95: 23-38. doi: 10.1016/j.datak.2014.11.004
  • [15] Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B et al. On optimization methods for deep learning. In: Proceedings of the 28th International Conference on International Conference on Machine Learning; Bellevue, Washington, USA; 2011. pp. 265-272.
  • [16] Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Michael J, Yann L, Sara S (editors). Advances in Neural Information Processing Systems. London, UK: The MIT Press, 2014, pp. 3320-3328.
  • [17] Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Proceedings of the 20th International Conference on Neural Information Processing Systems; British Columbia, Canada; 2007. pp. 153-160.
  • [18] Li H, Wang X, Ding S. Research and development of neural network ensembles: A survey. Artificial Intelligence Review 2018; 49 (4): 455-79. doi: 10.1007/s10462-016-9535-1
  • [19] Aljarah I, Faris H, Mirjalili S. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing 2018; 22 (1): 1-5. doi: 10.1007/s00500-016-2442-1
  • [20] Bara M, Ahmad N, Modu M, Ali H. Self-organizing map clustering method for the analysis of e-learning activities. In: IEEE 2018 Majan international conference (MIC); Muscat, Oman; 2018. pp. 1-5. doi: 10.1109/MINTC.2018.8363155
  • [21] Almeida A, Azkune G. Predicting human behaviour with recurrent neural networks. Applied Sciences 2018; 8 (2): 305. doi: 10.3390/app8020305
  • [22] Thai-Nghe N, Horváth T, Schmidt-Thieme L. Factorization models for forecasting student performance. In: The 4th International Conference on Educational Data Mining; Eindhoven, The Netherlands; 2011. pp. 11-20. doi: 10.1109/ICALT.2011.130
  • [23] Pardos ZA, Heffernan NT. Modeling individualization in a bayesian networks implementation of knowledge tracing. In: Springer 2010 International Conference on User Modeling, Adaptation, and Personalization; Berlin, Heidelberg; 2010. pp. 255-266. doi: 10.1007/978-3-642-13470-8_24
  • [24] Al-Emran M, Elsherif H, Shaalan K. Investigating attitudes towards the use of mobile learning in higher education. Computers in Human behavior 2016; 56: 93-102. doi: 10.1016/j.chb.2015.11.033
  • [25] Cerna M. Modified recommender system model for the utilized eLearning platform. Journal of Computers in Education 2019; 1-25. doi: 10.1007/s40692-019-00133-9
  • [26] Prieto J, Migueláñez S, García-Peñalvo F. Understanding mobile learning: devices, pedagogical implications and research lines. Teoría de la Educación. Educación y Cultura en la Sociedad de la Información 2014; 15 (1): 20-42.
  • [27] Nordin N, Embi M, Yunus M. Mobile learning framework for lifelong learning. Procedia-Social and Behavioral Sciences 2010; 7: 130-8. doi: 10.1016/j.sbspro.2010.10.019
  • [28] Sharples M, Corlett D, Westmancott O. The design and implementation of a mobile learning resource. Personal and Ubiquitous Computing 2002; 6 (3): 220-234. doi: 10.1007/s007790200021
  • [29] Schuck S, Kearney M, Burden K. Exploring mobile learning in the third space. Technology, Pedagogy and Education 2017; 26 (2): 121-137. doi: 10.1080/1475939X.2016.1230555
  • [30] Christensen R, Knezek G. Readiness for integrating mobile learning in the classroom: challenges, preferences and possibilities. Computers in Human Behavior 2017; 76: 112-21. doi: 10.1016/j.chb.2017.07.014
  • [31] Dennen V, Burner J, Cates L. Information and communication technologies, and learning theories: putting pedagogy into practice. In: Voogt J, Knezek G, Christensen R, Lai KW (editors). Second Handbook of Information Technology in Primary and Secondary Education. Springer, Basel, Switzerland: Springer International Publishing, 2018, pp. 143-60. doi: 10.1007/978-3-319-71054-9_9
  • [32] Martins C, Faria L, De Carvalho C, Carrapatoso E. User modeling in adaptive hypermedia educational systems. Educational Technology & Society 2008; 11 (1): 194-207.
  • [33] Albert M, Kording K, Herrmann M, Jayaraman A. Fall classification by machine learning using mobile phones. PloS one 2012; 7 (5): e36556. doi: 10.1371/journal.pone.0036556
  • [34] O’Mahony MP, Smyth B. A Classification-Based Review Recommender. Research and Development in Intelligent Systems XXVI. Springer-Verlag London: Springer, 2010.
  • [35] Portugal I, Alencar P, Cowan D. The use of machine learning algorithms in recommender systems: A systematic review. Expert Systems with Applications 2018; 97: 205-227. doi: 10.1016/j.eswa.2017.12.020
  • [36] Martins C, Faria L, De Carvalho V, Carrapatoso E. User modeling in adaptive hypermedia educational systems. Educational Technology & Society 2008; 11(1): 194-207.
  • [37] Hussain J, Hassan AU, Bilal HS, Ali R, Afzal M et al. Model-based adaptive user interface based on context and user experience evaluation. Journal on Multimodal User Interfaces 2018; 12 (1): 1-6. doi: 10.1007/s12193-018-0258-2
  • [38] Abela C, Staff C, Handschuh S. Task-based user modelling for knowledge work support. In: Springer 2010 International Conference on User Modeling, Adaptation, and Personalization; Big Island, HI, USA; 2010. pp. 419-422. doi: 10.1007/978-3-642-13470-8_44
  • [39] Guo B, Zhang R, Xu G, Shi C, Yang L. Predicting students performance in educational data mining. In: IEEE 2015 International Symposium on Educational Technology (ISET); Wuhan, China; 2015. pp. 125-128.
  • [40] Meng Q, Catchpoole D, Skillicom D, Kennedy PJ. Relational autoencoder for feature extraction. In: IEEE 2017 International Joint Conference on Neural Networks (IJCNN); Anchorage, Alaska; 2017. pp. 364-371. doi: 10.1109/IJCNN.2017.7965877
  • [41] Kurilovas E. Advanced machine learning approaches to personalise learning: Learning analytics and decision making. Behaviour & Information Technology 2019; 38(4): 410-21. doi: 10.1080/0144929X.2018.1539517
  • [42] Kahraman HT, Sagiroglu S, Colak I. The development of intuitive knowledge classifier and the modeling of domain dependent data. Knowledge-Based Systems. 2013; 37: 283-95. doi: 10.1016/j.knosys.2012.08.009
  • [43] Piech C, Bassen J, Huang J, Ganguli S, Sahami M et al. Deep knowledge tracing. In: Proceedings of the 28th Annual Conference of the Advances in neural information processing systems; Montreal, Canada; 2015. pp. 505-513.
  • [44] Xiong X, Zhao S, Van Inwegen EG, Beck JE. Going deeper with deep knowledge tracing. In: Proceedings of the 9th International Conference on Educational Data Mining (EDM); Raleigh, North Carolina; 2016. pp. 545-550.
APA ADNAN M, HABIB A, ASHRAF J, MUSSADIQ S, ALI RAZA A (2020). Deep neural network based m-learning model for predicting mobile learners’ performance. , 1422 - 1441. 10.3906/elk-1907-8
Chicago ADNAN Muhammad,HABIB Asad,ASHRAF Jawad,MUSSADIQ Shafaq,ALI RAZA Arsalan Deep neural network based m-learning model for predicting mobile learners’ performance. (2020): 1422 - 1441. 10.3906/elk-1907-8
MLA ADNAN Muhammad,HABIB Asad,ASHRAF Jawad,MUSSADIQ Shafaq,ALI RAZA Arsalan Deep neural network based m-learning model for predicting mobile learners’ performance. , 2020, ss.1422 - 1441. 10.3906/elk-1907-8
AMA ADNAN M,HABIB A,ASHRAF J,MUSSADIQ S,ALI RAZA A Deep neural network based m-learning model for predicting mobile learners’ performance. . 2020; 1422 - 1441. 10.3906/elk-1907-8
Vancouver ADNAN M,HABIB A,ASHRAF J,MUSSADIQ S,ALI RAZA A Deep neural network based m-learning model for predicting mobile learners’ performance. . 2020; 1422 - 1441. 10.3906/elk-1907-8
IEEE ADNAN M,HABIB A,ASHRAF J,MUSSADIQ S,ALI RAZA A "Deep neural network based m-learning model for predicting mobile learners’ performance." , ss.1422 - 1441, 2020. 10.3906/elk-1907-8
ISNAD ADNAN, Muhammad vd. "Deep neural network based m-learning model for predicting mobile learners’ performance". (2020), 1422-1441. https://doi.org/10.3906/elk-1907-8
APA ADNAN M, HABIB A, ASHRAF J, MUSSADIQ S, ALI RAZA A (2020). Deep neural network based m-learning model for predicting mobile learners’ performance. Turkish Journal of Electrical Engineering and Computer Sciences, 28(3), 1422 - 1441. 10.3906/elk-1907-8
Chicago ADNAN Muhammad,HABIB Asad,ASHRAF Jawad,MUSSADIQ Shafaq,ALI RAZA Arsalan Deep neural network based m-learning model for predicting mobile learners’ performance. Turkish Journal of Electrical Engineering and Computer Sciences 28, no.3 (2020): 1422 - 1441. 10.3906/elk-1907-8
MLA ADNAN Muhammad,HABIB Asad,ASHRAF Jawad,MUSSADIQ Shafaq,ALI RAZA Arsalan Deep neural network based m-learning model for predicting mobile learners’ performance. Turkish Journal of Electrical Engineering and Computer Sciences, vol.28, no.3, 2020, ss.1422 - 1441. 10.3906/elk-1907-8
AMA ADNAN M,HABIB A,ASHRAF J,MUSSADIQ S,ALI RAZA A Deep neural network based m-learning model for predicting mobile learners’ performance. Turkish Journal of Electrical Engineering and Computer Sciences. 2020; 28(3): 1422 - 1441. 10.3906/elk-1907-8
Vancouver ADNAN M,HABIB A,ASHRAF J,MUSSADIQ S,ALI RAZA A Deep neural network based m-learning model for predicting mobile learners’ performance. Turkish Journal of Electrical Engineering and Computer Sciences. 2020; 28(3): 1422 - 1441. 10.3906/elk-1907-8
IEEE ADNAN M,HABIB A,ASHRAF J,MUSSADIQ S,ALI RAZA A "Deep neural network based m-learning model for predicting mobile learners’ performance." Turkish Journal of Electrical Engineering and Computer Sciences, 28, ss.1422 - 1441, 2020. 10.3906/elk-1907-8
ISNAD ADNAN, Muhammad vd. "Deep neural network based m-learning model for predicting mobile learners’ performance". Turkish Journal of Electrical Engineering and Computer Sciences 28/3 (2020), 1422-1441. https://doi.org/10.3906/elk-1907-8