The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)

Yıl: 2019 Cilt: 6 Sayı: 2 Sayfa Aralığı: 196 - 204 Metin Dili: İngilizce DOI: 10.21448/ijsm.499519 İndeks Tarihi: 22-04-2020

The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)

Öz:
In this study, the effects of secondary metabolites on the feedingpreference and growth of generalist caterpillars, Agelastica alni L., wereinvestigated. Feeding experiment has been applied with a total of 11 diet; 6 ofwhich were prepared by adding different concentrations of gallic acid (1, 3, 5 %)and quinine (0.125, 0.25, 0.5 %) to the control diet, 3 diet of which prepared byadding different concentrations of gallic acid and quinine. According to theresults, the amount of gallic acid consumed did not affect the food consumptionand the amount of pupa lipids. However, the amount of gallic acid consumedpositively affects the pupal mass and the pupal crude protein. In addition, theamount of quinine consumed negatively affected the developmental performanceof larvae except for the food consumption. As the count of secondary metabolitesin the diet increases, the pupal mass and the pupal crude protein decrease. Overall,during the co-evolution processs, A. alni larvae may be able to adapt togallotannins. However, quinine, an alkaloid, is a feeding deterrence and growthsuppressor for larvae.
Anahtar Kelime:

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Ryan, M. F. (2002). Insect Chemoreception Fundamental and Applied, 1st ed.; Kluwer Academic Publishers: Dordrecht, USA, 2002; pp. 28; 1-4020-0270-X.
  • [2] Heflin, L.E., Raubenheimer, D., Simpson, S.J., Watts, S.A. (2016). Balancing macronutrient intake in cultured Lytechinus variegatus. Aquaculture, 450, 295-300.
  • [3] Gall, M.L., Behmer, S.T. (2014). Effects of protein and carbohydrate on an insect herbivore: The vista from a fitness landscape. Integr. Comp. Biol., 54, 942-954.
  • [4] Mattson, W. J. (1980). Herbivory in Relation to Plant Nitrogen Content. Annu. Rev. Ecol. Evol. Syst., 11, 119-161.
  • [5] Hasheminia, S. M., Sendi, J.J., Jahromi, K.T., Moharramipour, S. (2013). Effect of milk thistle, Silybium marianum, extract on toxicity, development, nutrition, and enzyme activities of the small white butterfly, Pieris rapae. J Insect Sci., 13, 146.
  • [6] El-Keredy, A. (2014). Genetic and behavioral influences of quinine and monosodium glutamate on Drosophila melanogaster. Egypt J. Genet. Cytol., 43, 377-391.
  • [7] Bilgener, M. (1988). Chemical Components of Howler Monkeys (Alouatta palliata) Food Choice and Kinetics of Tannin Binding with Natural Polymers. Doctoral Thesis, Boston University, USA, 1988.
  • [8] Hagerman, A.E., Robbins, C.T., Weerasuriya, Y., Wilson, T. C., McArthur, C. (1992). Tannin chemistry in relation to digestion. J. Range Manage, 45, 57-62.
  • [9] He, Q., Shi, B., Yao, K. (2006). Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chem, 95, 250-254.
  • [10] Kessler, S., Gonzales, J., Vlimant, M., Glauser, G., Guerin, P.M. (2014). Quinine and artesunate inhibit feeding in the African malaria mosquito Anopheles gambiae: the role of gustatory organs within the mouthparts. Physiol. Entomol, 39, 172-182.
  • [11] Swain, T. (1976). Angiosperm reptile co-evolution. In: Bellairs d'A Cox CB (eds). - Morphology and Biology of Reptiles. A. Linnean Society Symposium Series (3).
  • [12] Levinson, H. Z. (1976). The defensive role of alkaloids in insects and plants. Experientia, 32, 408-411.
  • [13] Tischler, W. (1977). Continuity, of the biosystems Alder (Alnus) Alder (Agelastica alni). Zeitschrift fuer Angewandte Zoologia, 64, 69-92. [in Germany].
  • [14] Glendinning, J.I. (2007). How do predators cope with chemically defended foods? Biol. Bull., 213, 252–266.
  • [15] Yamamoto, I. V. (1969). Mass rearing of tobacco hornworm. II. Larval rearing and pupation. J. Ecol. Entomol., 62, 1427-1431.
  • [16] Lee, K.P., Behmer, S. T., Simpson, S. J., Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). J. Insect Physiol, 48, 655–665.
  • [17] Simpson, S.J., Raubenheimer, D. (2001). The geometric analysis of nutrientallelochemical interactions: a case study using locusts. Ecology, 82, 422-439.
  • [18] Yi, L., Lakemonda, C. M. M., Sagisb, L. M. C., Eisner-Schadlerc, V., van Huisd, A., van Boekela, M. A. J. S. (2013). Extraction and characterization of protein fractions from five insect species. Food Chem, 141, 3341-3348
  • [19] Oonincx, D. A. G. B., Van Broekhoven, S., Van Huis, A., Van Loon, J. J. A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PloS One, 10(12), 1-20. doi:10.1371/journal.pone.0144601
  • [20] Alonso A. M., Guillen D. A., Barroso C. G., Puertas B., Garcia A. (2002). Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J. Agric. Food. Chem., 50, 5832-5836.
  • [21] Schoonhoven, L.M., Van Loon, J. J.A., Dicke, M. (2005). Insect-Plant Biology, 2nd ed. Oxford, Oxford University Press, 2005.
  • [22] Barbehenn, R.V., Niewiadomski, J., Pecci, C., Salminen, J.P. (2013). Physiological benefits of feeding in the spring by Lymantria dispar caterpillars on red oak and sugar maple leaves: nutrition versus oxidative stress. Chemoecology, 23, 59-70.
  • [23] Lestari, P., Khumaida, N., Sartıamı, D., Mardiningsih, T. L. (2015). Selection criteria of Graptophyllum pictum resistance to Doleschallia bisaltide cramer (Lep: Nymphalidae) attack based on insect feeding preference. Sabrao J. Breed. Genet., 47(2), 172-184.
  • [24] Karowe, D. N. (1989). Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry. Oecologia, 80, 507-512.
  • [25] Salminen, J. P., Lempa, K. (2002). Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology, 12, 203-211.
  • [27] Chown, S. L., Nicholson, S. W. (2004). Insect Physiological Ecology: Mechanism and Patterns. Oxford University Press: Oxford, Great Britain, 2004; pp.34-36; ISBN: 0 19 851549 9
  • [28] Firidin, B., Mutlu C. (2009). Nitrogen utilization pattern and degradation capability of some plant secondary metabolites by Agelastica alni L. (Coleoptera: Chrysomelidae). J Entomol. Res. Soc., 11(2), 1-15.
  • [29] Robinson, T. (1974). Metabolism and function of alkaloids in plants. Science, 184, 430- 435.
  • [30] Robinson, T. (1979). The evolutionary ecology of alkaloids. In: Rosenthal G. A., Janzen D. H. (eds). Herbivores: their interaction with secondary metabolites. Academic Press: Newyork, USA, 1979.
  • [31] Aniszewski T. 2007: Alkaloids - Secrets of Life. In: Alkaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier.
  • [32] Hemming, J. D. C., Lindroth, R.L. (1995). Intraspecific variation in aspen phytochemistry – effects on performance of gypsy moths and forest tent caterpillars. Oecologia, 103, 79- 88.
  • [33] O’brien, R.L., Olenick, J. G., Hahn, F. E. (1966). Reactions of quinine, chloroquinine and quinacrine with DNA and their effects on the DNA and RNA polymerase reactions. Proc. Natl. Acad. Sci. U S A, 1511-1517.
  • [34] Castellanos, I., Espinosa- Garcia, F. J. (1997). Plant secondary metabolite diversity as a resistance trait against insects: a test with Sitophilus granarius (Coleoptera: Curculionidae) and seed secondary metabolites. Biochem Syst Ecol, 591-602.
APA YILDIZ D, ALTUN N, Bilgener M (2019). The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). , 196 - 204. 10.21448/ijsm.499519
Chicago YILDIZ DILEK,ALTUN Nurver,Bilgener Mahmut The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). (2019): 196 - 204. 10.21448/ijsm.499519
MLA YILDIZ DILEK,ALTUN Nurver,Bilgener Mahmut The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). , 2019, ss.196 - 204. 10.21448/ijsm.499519
AMA YILDIZ D,ALTUN N,Bilgener M The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). . 2019; 196 - 204. 10.21448/ijsm.499519
Vancouver YILDIZ D,ALTUN N,Bilgener M The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). . 2019; 196 - 204. 10.21448/ijsm.499519
IEEE YILDIZ D,ALTUN N,Bilgener M "The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)." , ss.196 - 204, 2019. 10.21448/ijsm.499519
ISNAD YILDIZ, DILEK vd. "The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)". (2019), 196-204. https://doi.org/10.21448/ijsm.499519
APA YILDIZ D, ALTUN N, Bilgener M (2019). The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). International Journal of Secondary Metabolite, 6(2), 196 - 204. 10.21448/ijsm.499519
Chicago YILDIZ DILEK,ALTUN Nurver,Bilgener Mahmut The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). International Journal of Secondary Metabolite 6, no.2 (2019): 196 - 204. 10.21448/ijsm.499519
MLA YILDIZ DILEK,ALTUN Nurver,Bilgener Mahmut The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). International Journal of Secondary Metabolite, vol.6, no.2, 2019, ss.196 - 204. 10.21448/ijsm.499519
AMA YILDIZ D,ALTUN N,Bilgener M The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). International Journal of Secondary Metabolite. 2019; 6(2): 196 - 204. 10.21448/ijsm.499519
Vancouver YILDIZ D,ALTUN N,Bilgener M The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae). International Journal of Secondary Metabolite. 2019; 6(2): 196 - 204. 10.21448/ijsm.499519
IEEE YILDIZ D,ALTUN N,Bilgener M "The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)." International Journal of Secondary Metabolite, 6, ss.196 - 204, 2019. 10.21448/ijsm.499519
ISNAD YILDIZ, DILEK vd. "The Effect of Nutrient-Allelochemicals Interaction on Food Consumption and Growth Performance of Alder Leaf Beetle, Agelastica alni L. (Coleoptera: Chrysomelidae)". International Journal of Secondary Metabolite 6/2 (2019), 196-204. https://doi.org/10.21448/ijsm.499519