Yıl: 2019 Cilt: 5 Sayı: 2 Sayfa Aralığı: 115 - 125 Metin Dili: İngilizce DOI: 10.17515/resm2018.55is0704 İndeks Tarihi: 01-07-2020

Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures

Öz:
Epoxy based fiber reinforced composites are widely utilized in aerospaceapplications due to mechanical properties, thermal stability and, chemicalresistance. However, it is known that materials become brittle and due to thepoor crack resist restricts their applications in cryogenic engineeringapplications. The purpose of this paper is to experimentally investigate thecryogenic temperatures’ effect on the low-velocity impact (LVI) test of compositelaminates. In addition, the effect of matrix modification in the studied compositeswas investigated. The LVI tests were conducted at RT (room temperature), 0 °C,-50 °C, -150 °C and -196 °C (liquid nitrogen temperature) on the compositelaminates to measure influence on their energy absorption capacity. LVI testsperformed according to ASTM-D-7136 standard under 10, 20 and 30 J impactenergy levels. The results show that the contact forces and energy absorptioncapacities are improved by adding SiO2 nanoparticles into the epoxy matrix. Theabsorbed energy at cryogenic temperatures is increased by 24.87% from 18.1 Jof pure epoxy resin to 22.7 J of modified epoxy. For the purpose of comparison,the LVI properties of composites at room temperature (RT) are also investigated.It is noted that the energy absorption capacity is not higher at cryogenictemperatures than that at RT for the modified and neat epoxy composites.Moreover, the peak contact forces are reduced in low-temperature conditions.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Kagitci, Y.C. and N. Tarakcioglu, The effect of weld line on tensile strength in a polymer composite part. The International Journal of Advanced Manufacturing Technology, 2016. 85(5-8): p. 1125-1135. https://doi.org/10.1007/s00170-015-8007-0
  • [2] Guermazi, N., et al., Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures. Materials & Design (1980-2015), 2014. 56: p. 714-724. https://doi.org/10.1016/j.matdes.2013.11.043
  • [3] El Moumen, A., et al., Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact. Composites Part B: Engineering, 2017. 125: p. 1-8. https://doi.org/10.1016/j.compositesb.2017.05.065
  • [4] Bansemir, H. and O. Haider, Fibre composite structures for space applications—recent and future developments. Cryogenics, 1998. 38(1): p. 51-59. https://doi.org/10.1016/S0011-2275(97)00110- 0
  • [5] Praveen, R., et al., Hybridization of carbon–glass epoxy composites: An approach to achieve low coefficient of thermal expansion at cryogenic temperatures. Cryogenics, 2011. 51(2): p. 95-104. https://doi.org/10.1016/j.cryogenics.2010.12.003
  • [6] Hartwig, G. and S. Knaak, Fibre-epoxy composites at low temperatures. Cryogenics, 1984. 24(11): p. 639-647. https://doi.org/10.1016/0011-2275(84)90083-3
  • [7] Kim, M.-G., J.-B. Moon, and C.-G. Kim, Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Composites Part A: Applied Science and Manufacturing, 2012. 43(9): p. 1620-1627. https://doi.org/10.1016/j.compositesa.2012.04.001
  • [8] Timmerman, J.F., et al., Matrix and fiber influences on the cryogenic microcracking of carbon fiber/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2002. 33(3): p. 323-329. https://doi.org/10.1016/S1359- 835X(01)00126-9
  • [9] Salehi-Khojin, A., et al., The role of temperature on impact properties of Kevlar/fiberglass composite laminates. Composites Part B: Engineering, 2006. 37(7-8): p. 593-602. https://doi.org/10.1016/j.compositesb.2006.03.009
  • [10]Icten, B.M., et al., Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates. Composite Structures, 2009. 91(3): p. 318-323. https://doi.org/10.1016/j.compstruct.2009.05.010
  • [11]Deng, S., L. Ye, and K. Friedrich, Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures. Journal of materials science, 2007. 42(8): p. 2766-2774. https://doi.org/10.1007/s10853-006-1420-x
  • [12]Phonthammachai, N., H. Chia, and C. He, One-Step Synthesis of Oval Shaped Silica/Epoxy Nanocomposite: Process, Formation Mechanism and Properties, in The Delivery of Nanoparticles. 2012, InTech. https://doi.org/10.5772/34800
  • [13]Sadej-Bajerlain, M., H. Gojzewski, and E. Andrzejewska, Monomer/modified nanosilica systems: photopolymerization kinetics and composite characterization. Polymer, 2011. 52(7): p. 1495-1503. https://doi.org/10.1016/j.polymer.2011.01.058
  • [14]Demirci, M.T., et al., Fracture toughness (Mode I) characterization of SiO2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method. Composites Part B: Engineering, 2017. 119: p. 114-124. https://doi.org/10.1016/j.compositesb.2017.03.045
  • [15]Zare, Y., Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composites Part A: Applied Science and Manufacturing, 2016. 84: p. 158-164. https://doi.org/10.1016/j.compositesa.2016.01.020
  • [16]Kara, M., et al., Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment. Composites Part B: Engineering, 2018. 145: p. 145-154. https://doi.org/10.1016/j.compositesb.2018.03.027
  • [17]Kaybal, H.B., et al., Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites. Engineering Science and Technology, an International Journal, 2018.
  • [18]Eskizeybek, V., et al., Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites. Composites Part B: Engineering, 2018. 140: p. 223-231. https://doi.org/10.1016/j.compositesb.2017.12.013
  • [19]Üstün, T., et al., Evaluating the effectiveness of nanofillers in filament wound carbon/epoxy multiscale composite pipes. Composites Part B: Engineering, 2016. 96: p. 1-6. https://doi.org/10.1016/j.compositesb.2016.04.031
  • [20]Ulus, H., et al., Low-velocity impact behavior of carbon fiber/epoxy multiscale hybrid nanocomposites reinforced with multiwalled carbon nanotubes and boron nitride nanoplates. Journal of Composite Materials, 2016. 50(6): p. 761-770. https://doi.org/10.1177/0021998315580835
  • [21]Ulus, H., Ö.S. Şahin, and A. Avcı, Enhancement of flexural and shear properties of carbon fiber/epoxy hybrid nanocomposites by boron nitride nano particles and carbon nano tube modification. Fibers and Polymers, 2015. 16(12): p. 2627-2635. https://doi.org/10.1007/s12221-015-5603-4
  • [22]Chen, Z.-K., et al., Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer, 2009. 50(19): p. 4753-4759. https://doi.org/10.1016/j.polymer.2009.08.001
  • [23]Yang, G., S.-Y. Fu, and J.-P. Yang, Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer, 2007. 48(1): p. 302-310. https://doi.org/10.1016/j.polymer.2006.11.031
  • [24]Yang, J.-P., et al., Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer, 2008. 49(13-14): p. 3168-3175. https://doi.org/10.1016/j.polymer.2008.05.008
  • [25]Demirci, M.T., et al., Fracture toughness (Mode I) characterization of SiO 2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method. Composites Part B: Engineering, 2017. 119: p. 114-124. https://doi.org/10.1016/j.compositesb.2017.03.045
  • [26]Eskizeybek, V., A. Avci, and A. Gülce, The Mode I interlaminar fracture toughness of chemically carbon nanotube grafted glass fabric/epoxy multi-scale composite structures. Composites Part A: Applied Science and Manufacturing, 2014. 63: p. 94-102. https://doi.org/10.1016/j.compositesa.2014.04.013
APA TATAR A, KAYBAL H, ULUS H, DEMİR O, Avci A (2019). Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. , 115 - 125. 10.17515/resm2018.55is0704
Chicago TATAR Ahmet C.,KAYBAL Halil B.,ULUS Hasan,DEMİR Okan,Avci Ahmet Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. (2019): 115 - 125. 10.17515/resm2018.55is0704
MLA TATAR Ahmet C.,KAYBAL Halil B.,ULUS Hasan,DEMİR Okan,Avci Ahmet Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. , 2019, ss.115 - 125. 10.17515/resm2018.55is0704
AMA TATAR A,KAYBAL H,ULUS H,DEMİR O,Avci A Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. . 2019; 115 - 125. 10.17515/resm2018.55is0704
Vancouver TATAR A,KAYBAL H,ULUS H,DEMİR O,Avci A Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. . 2019; 115 - 125. 10.17515/resm2018.55is0704
IEEE TATAR A,KAYBAL H,ULUS H,DEMİR O,Avci A "Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures." , ss.115 - 125, 2019. 10.17515/resm2018.55is0704
ISNAD TATAR, Ahmet C. vd. "Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures". (2019), 115-125. https://doi.org/10.17515/resm2018.55is0704
APA TATAR A, KAYBAL H, ULUS H, DEMİR O, Avci A (2019). Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. Research on Engineering Structures and Materials, 5(2), 115 - 125. 10.17515/resm2018.55is0704
Chicago TATAR Ahmet C.,KAYBAL Halil B.,ULUS Hasan,DEMİR Okan,Avci Ahmet Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. Research on Engineering Structures and Materials 5, no.2 (2019): 115 - 125. 10.17515/resm2018.55is0704
MLA TATAR Ahmet C.,KAYBAL Halil B.,ULUS Hasan,DEMİR Okan,Avci Ahmet Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. Research on Engineering Structures and Materials, vol.5, no.2, 2019, ss.115 - 125. 10.17515/resm2018.55is0704
AMA TATAR A,KAYBAL H,ULUS H,DEMİR O,Avci A Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. Research on Engineering Structures and Materials. 2019; 5(2): 115 - 125. 10.17515/resm2018.55is0704
Vancouver TATAR A,KAYBAL H,ULUS H,DEMİR O,Avci A Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures. Research on Engineering Structures and Materials. 2019; 5(2): 115 - 125. 10.17515/resm2018.55is0704
IEEE TATAR A,KAYBAL H,ULUS H,DEMİR O,Avci A "Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures." Research on Engineering Structures and Materials, 5, ss.115 - 125, 2019. 10.17515/resm2018.55is0704
ISNAD TATAR, Ahmet C. vd. "Evaluation of low-velocity impact behavior of epoxy nanocomposite laminates modified with SiO2 nanoparticles at cryogenic temperatures". Research on Engineering Structures and Materials 5/2 (2019), 115-125. https://doi.org/10.17515/resm2018.55is0704