(İzmir Yüksek Teknoloji Enstitüsü, Mühendislik ve Fen Bilimleri Enstitüsü, İzmir, Türkiye)
(İzmir Katip Çelebi Üniversitesi, Makine Mühendisliği Bölümü, İzmir, Türkiye)
(İzmir Katip Çelebi Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Türkiye)
(İzmir Katip Çelebi Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye)
(Manisa Celal Bayar Üniversitesi, Metalurji ve Malzeme Mühendisliği Bölümü, Manisa, Türkiye)
Yıl: 2019Cilt: 5Sayı: 2ISSN: 2148-9807 / 2149-4088Sayfa Aralığı: 189 - 201İngilizce

46 0
Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method
In this study, the main objective is to minimize the failure index of a cylindrical laminated composite hydrogen storage tank under internal pressure. The first step is to obtain the distribution of stress components based on Classical Laminated Plate Theory (CLPT). The second is to evaluate the burst pressure of the tank according to three different first ply failure criteria and then to compare the results with the experimental and numerical ones from literature. In the final part of the study, the best possible combination of winding angles, stacking sequences and thicknesses of laminates satisfying minimum possible stress concentration will be obtained for different Carbon/Epoxy materials by Differential Evolution Method. The stress components and, the burst pressures reached according to Hashin-Rotem, Maximum Stress, and Tsai-Wu first-ply failure criteria, have been complied with experimental and numerical results in the literature for Type III pressure vessels. Manufacturable Type-III tank designs have been proposed satisfying the 35 MPa burst pressure for different Carbon/Epoxy materials.
DergiDiğerErişime Açık
  • [1] George G, Schillebeeckx SJD. Managing Natural Resources: Organizational Strategy. Behaviour and Dynamics, Edward Elgar Publishing, Massachusetts, MA, USA, 2018. https://doi.org/10.4337/9781786435729
  • [2] Cox R. Hydrogen: Its Technology and Implication: Production Technology, CRC Press, Florida, USA, 2018.
  • [3] Barthelemy H, Weber H, Barbier F. Hydrogen storage: recent improvements and industrial perspectives. International Journal of Hydrogen Energy, 2017; 42(11): 7254-7262. https://doi.org/10.1016/j.ijhydene.2016.03.178
  • [4] Cohen D. Influence of filament winding parameters on composite vessel quality and strength. Composites Part A: Applied Science and Manufacturing, 1997; 28(12): 1035- 1047. https://doi.org/10.1016/S1359-835X(97)00073-0
  • [5] Barbero EJ. Introduction to Composite Materials Design. CRC Press, Florida, NW, USA, 2017.
  • [6] Liu PF, Chu JK, Hou SJ, Xu P, Zheng JY. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review. Renewable and Sustainable Energy Reviews, 2012; 16(4): 1817-1827. https://doi.org/10.1016/j.rser.2012.01.006
  • [7] Messager T, Pyrz M, Gineste B, Chauchot P. Optimal laminations of thin underwater composite cylindrical vessels. Composite Structures, 2002; 58(4): 529-537. https://doi.org/10.1016/S0263-8223(02)00162-9
  • [8] Parnas L, Katırcı N. Design of fiber-reinforced composite pressure vessels under various loading conditions. Composite Structures, 2002; 58(1): 83-95. https://doi.org/10.1016/S0263-8223(02)00037-5
  • [9] Tabakov PY. Multi-dimensional design optimization of laminated structures using an improved genetic algorithm. Composite Structures, 2001; 54 (2): 349-354. https://doi.org/10.1016/S0263-8223(01)00109-X
  • [10] Richard F, Perreux D. A reliability method for optimization of [+ ϕ,− ϕ] n fiber reinforced composite pipes. Reliability Engineering and System Safety, 2000; 68(1): 53-59. https://doi.org/10.1016/S0951-8320(00)00002-8
  • [11] Lin DT, Hsieh JC, Chindakham N, Hai PD. Optimal design of a composite laminate hydrogen storage vessel. International Journal of Energy Research, 2013; 37(7): 761- 768. https://doi.org/10.1002/er.2983
  • [12] Han MG, Chang SH. Failure analysis of a Type III hydrogen pressure vessel under impact loading induced by free fall. Composite Structures, 2015; 127: 288-297. https://doi.org/10.1016/j.compstruct.2015.03.027
  • [13] Park WR, Fatoni NF, Kwon OH. Evaluation of stress and crack behavior using the extended finite element method in the composite layer of a type III hydrogen storage vessel. Journal of Mechanical Science and Technology, 2018; 32(5): 1995-2002. https://doi.org/10.1007/s12206-018-0407-2
  • [14] Nikbakt S, Kamarian S, Shakeri M. A review on optimization of composite structures part I: Laminated Composites. Composite Structures, 2018; 195: 158-185. https://doi.org/10.1016/j.compstruct.2018.03.063
  • [15] Roque CMC, Martins PALS. Maximization of fundamental frequency of layered composites using differential evolution optimization. Composite Structures, 2018; 183(1): 77-83. https://doi.org/10.1016/j.compstruct.2017.01.037
  • [16] Chakraborty D, Dutta A. Optimization of FRP composites against impact induced failure using island model parallel genetic algorithm. Composites Science and Technology, 2005; 65(13): 2003-2013. https://doi.org/10.1016/j.compscitech.2005.03.016
  • [17] Jing Z, Sun Q, Silberschmidt VV. Sequential permutation table method for optimization of stacking sequence in composite laminates. Composite Structures, 2016; 141: 240-252. https://doi.org/10.1016/j.compstruct.2016.01.052
  • [18] Irisarri FX, Bassir DH, Carrere N, Maire JF. Multiobjective stacking sequence optimization for laminated composite structures. Composites Science and Technology, 2009; 69(7-8): 983-990. https://doi.org/10.1016/j.compscitech.2009.01.011
  • [19] Zu L, Koussios S, Beukers A. Design of filament-wound circular toroidal hydrogen storage vessels based on non-geodesic fiber trajectories. International Journal of Hydrogen Energy, 2010; 35(2): 660-670. https://doi.org/10.1016/j.ijhydene.2009.10.062
  • [20] Francescato P, Gillet A, Leh D, Saffre P. Comparison of optimal design methods for type 3 high-pressure storage tanks. Composite Structures, 2012; 94(6): 2087-2096. https://doi.org/10.1016/j.compstruct.2012.01.01
  • [21] Pelletier JL, Vel SS. Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Computers and Structures, 2006; 84(29-30): 2065-2080. https://doi.org/10.1016/j.compstruc.2006.06.001
  • [22] Alcantar V, Ledesma S, Aceves SM, Ledesma E, Saldana A. Optimization of type III pressure vessels using genetic algorithm and simulated annealing. International Journal of Hydrogen Energy, 2017; 42(31): 20125-20132. https://doi.org/10.1016/j.ijhydene.2017.06.146
  • [23] Tsai SW. Strength Characteristics of Composite Materials. NASA CR-224, National Aeronautics and Space Administration, Washington, D. C., 1965:5-43.
  • [24] Hill R. A Theory of the Yielding and Plastic Flow of Anisotropic Materials. Proceedings of the Royal Society, 1948; 193: 281-297.
  • [25] Hoffman O. The Brittle Strength of Orthotropic Materials. Journal of Composite Materials, 1967; 1: 200-206. https://doi.org/10.1177/002199836700100210
  • [26] Kaw AK. Mechanics of composite materials, CRC press, Florida, USA, 2005.
  • [27] Aydin L, Artem HS, Oterkus E, Gundogdu O, Akbulut H. Mechanics of fiber composites. Fiber Technology for Fiber-Reinforced Composites, Woodhead Publishing, Cambridge, England, 2017:5-50. https://doi.org/10.1016/B978-0-08- 101871-2.00002-3
  • [28] Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials, 1973; 7(4): 448-464. https://doi.org/10.1177/002199837300700404
  • [29] Ozturk S, Aydin L, Kucukdogan N, Celik E. Optimization of lapping processes of silicon wafer for photovoltaic applications. Solar Energy, 2018; 164: 1-11. https://doi.org/10.1016/j.solener.2018.02.039
  • [30] Ozturk S, Aydin L, Celik E. A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications. Solar Energy, 2018; 161: 109-124. https://doi.org/10.1016/j.solener.2017.12.040
  • [31] Aydin L, Artem HS. Design and optimization of fiber composites. Fiber Technology for Fiber-Reinforced Composites. Woodhead Publishing, Cambridge, England, 2017:299-315. https://doi.org/10.1016/B978-0-08-101871-2.00014-X
  • [32] Liu P, Xing L, Zheng J. Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Composites Part B: Engineering, 2014; 56: 54-61. https://doi.org/10.1016/j.compositesb.2013.08.017
  • [33] Zheng J, Liu P. Elasto-plastic stress analysis and burst strength evaluation of Alcarbon fiber/epoxy composite cylindrical laminates. Computational Materials Science, 2008; 42(3): 453-461. https://doi.org/10.1016/j.commatsci.2007.09.011
  • [34] Mian HH, Wang G, Dar UA, Zhang W. Optimization of composite material system and lay-up to achieve minimum weight pressure vessel. Applied Composite Materials, 2013; 20(5): 873-889. https://doi.org/10.1007/s10443-012-9305-4

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.