Yıl: 2019 Cilt: 7 Sayı: 2 Sayfa Aralığı: 272 - 286 Metin Dili: İngilizce DOI: 10.15317/Scitech.2019.198 İndeks Tarihi: 23-06-2020

VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES

Öz:
In this study, vibration characteristics of functionally graded rotating Timoshenko beamsthat undergoes flapwise bending vibration are analysed. Beam models with different materialdistribution properties are considered. The energy expressions are derived by introducing severalexplanotary figures and tables. Applying the Hamilton’s Principle to the derived energy expressions,governing differential equations of motion and the boundary conditions are obtained. Relatedformulation is coded by using MATLAB and in the solution part, the equations of motion, including theparameters for the rotary inertia, shear deformation, power law index parameter and slenderness ratioare solved using an efficient mathematical technique, called the differential transform method (DTM).Natural frequencies of the modeled beams are obtained. Increasing effects of the slenderness ratio andthe rotational speed and the decreasing effect of the power-law index on the natural frequencies areinvestigated. Moreover, differences between the natural frequencies of the beam models with differentmaterial distribution characteristics is noticed and examined. Obtained results are distributed in severaltables.
Anahtar Kelime:

Fonksiyonel Derecelendirilmiş Dönen Timoshenko Kirişlerin Titreşim Analizi

Öz:
Bu çalışma kapsamında, düzlem dışı eğilme (flaplama hareketi) deplasmanı altında fonksiyonel derecelendirilmiş, dönen Timoshenko kirişlerin titreşim analizi yapılmıştır. Farklı malzeme dağılımlarına sahip kiriş modelleri incelenmiş ve enerji ifadeleri, çeşitli şekil ve tablolar kullanılarak çıkarılmış ve bu enerji denklemlerine Hamilton Prensibi uygulanarak hareket denklemleri ve sınır şartları elde edilmiştir ve ilgili denklemler, MATLAB programında kodlanmıştır. Çözüm aşamasında; dönme ataleti, kayma etkisi, malzeme dağılımı üstel fonksiyonu, kiriş narinlik oranı gibi çok çeşitli parametrelerin katıldığı hareket denklemleri ve sınır şartlarına, etkin ve hızlı bir matematiksel yöntem olan Diferansiyel Dönüşüm Yöntemi (Differential Transform Method) uygulanmıştır. Modellenen kirişlere ait doğal frekanslar hesaplanmıştır. Narinlik oranı ve dönme hızının frekanslar üzerindeki yükseltici etkileri ve malzeme dağılımı ile ilgili olarak güç indeksinin, frekanslar üzerindeki azaltıcı etkisi incelenmiştir. Ayrıca, farklı malzeme dağılım karakterlerine sahip kirişlere air frekans değerleri arasındaki farklar fark edilmiş ve incelenmiştir. Elde edilen sonuçlar, çeşitli tablolarda sunulmuştur.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akash, B. A., Mamlook, R., Mohsen, S. M., 1999, “Multi-criteria selection of electric power plants using analytical hierarchy process”, Electric Power Systems Research, Cilt 52, Sayı 1, ss. 29-35.
  • Alshorbagy AE, Eltaher MA, Mahmoud FF, 2011, Free vibration characteristics of a functionally graded beam by finite element method, Applied Mathematical Modelling, 35, 412–425.
  • Bhimaraddi A, Chandrashekhara K., 1991, Some observation on the modeling of laminated composite beams with general lay-ups, Composite Structures, 19, 371–380
  • Chakraborty A, Gopalakrishnan S, Reddy JN., 2003, A new beam finite element for the analysis of functionally graded materials, International Journal of Mechanical Sciences, 45, 519–539.
  • Dadfarnia M., 1997, Nonlinear forced vibration of laminated beam with arbitrary lamination, M.Sc. Thesis, Sharif University of Technology.
  • Deng HD and Wei C, 2016, Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams, Composite Structures, in press.
  • Eringen, AC., 1980, Mechanics of Continua, Robert E. Krieger Publishing Company, Huntington, New York.
  • Giunta G, Crisafulli D, Belouettar S, Carrera E., 2011, Hierarchical theories for the free vibration analysis of functionally graded beams, Composite Structures, 94, 68–74.
  • Hodges, D. H., Dowell, E. H., 1974, Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, NASA Technical Report,NASA TN D-7818.
  • Huang Y, Li XF., 2010, A new approach for free vibration of axially functionally graded beams with nonuniform cross-section, Journal of Sound and Vibration, 329, 2291–2303.
  • Kapuria S, Bhattacharyya M, Kumar AN., 2008, Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation, Composite Structures, 82, 390–402.
  • Kaya, M.O., Ozdemir Ozgumus, O., 2007, Flexural–torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM, Journal of Sound and Vibration, 306, 495–506.
  • Kaya, M.O., Ozdemir Ozgumus, O., 2010, Energy expressions and free vibration analysis of a rotating uniform timoshenko beam featuring bending–torsion coupling, Journal of Vibration and Control, 16(6), 915–934.
  • Kollar, LR., Springer, GS., 2003, Mechanics of Composite Structures. Cambridge University Press, United Kingdom.
  • Lai SK, Harrington J, Xiang Y, Chow KW., 2012, Accurate analytical perturbation approach for large amplitude vibration of functionally graded beams, International Journal of Non-Linear Mechanics, 47, 473–480.
  • Li XF., 2008, A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli Beams, Journal of Sound and Vibration, 318, 1210–1229.
  • Li XF, Kang YA, Wu JX, 2013, Exact frequency equation of free vibration of exponentially funtionally graded beams, Applied Acoustics, 74 (3), 413-420.
  • Loja MAR, Barbosa JI, Mota Soares CM., 2012, A study on the modelling of sandwich functionally graded particulate composite, Composite Structures, 94, 2209–2217.
  • Loy C.T., Lam K.Y., Reddy J.N., 1999, Vibration of functionally graded cylinderical shells, International Journal of Mechanical Science, 41, 309-324.
  • Lu CF, Chen WQ., 2005, Free vibration of orthotropic functionally graded beams with various end conditions, Structural Engineering and Mechanics, 20, 465–476.
  • Ozdemir O., 2016, Application of The Differential Transform Method to The Free Vibration Analysis of Functionally Graded Timoshenko Beams, Journal of Theoretical and Applied Mechanics 54, 4, 1205-1217.
  • Ozdemir Ozgumus, O., Kaya, M.O., 2013, Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending–bending-torsion coupling, Archive of Applied Mechanics, 83, 97–108.
  • Sina S.A., Navazi H.M., Haddadpour H., 2009, An analytical method for free vibration analysis of functionally graded beams, Materials and Design, 30, 741–747.
  • Şimsek M., 2010, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories, Nuclear Engineering and Design, 240, 697–705.
  • Tang AY, Wu JX, Li XF and Lee KY, 2014, Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams, International Journal of Mechanical Sciences, 89, 1-11.
  • Thai HT, Vo TP., 2012, Bending and free vibration of functionally graded beams using various higherorder shear deformation beam theories, International Journal of Mechanical Sciences, 62, 57–66.
APA OZDEMIR O (2019). VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. , 272 - 286. 10.15317/Scitech.2019.198
Chicago OZDEMIR OZGE VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. (2019): 272 - 286. 10.15317/Scitech.2019.198
MLA OZDEMIR OZGE VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. , 2019, ss.272 - 286. 10.15317/Scitech.2019.198
AMA OZDEMIR O VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. . 2019; 272 - 286. 10.15317/Scitech.2019.198
Vancouver OZDEMIR O VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. . 2019; 272 - 286. 10.15317/Scitech.2019.198
IEEE OZDEMIR O "VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES." , ss.272 - 286, 2019. 10.15317/Scitech.2019.198
ISNAD OZDEMIR, OZGE. "VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES". (2019), 272-286. https://doi.org/10.15317/Scitech.2019.198
APA OZDEMIR O (2019). VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi, 7(2), 272 - 286. 10.15317/Scitech.2019.198
Chicago OZDEMIR OZGE VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi 7, no.2 (2019): 272 - 286. 10.15317/Scitech.2019.198
MLA OZDEMIR OZGE VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi, vol.7, no.2, 2019, ss.272 - 286. 10.15317/Scitech.2019.198
AMA OZDEMIR O VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi. 2019; 7(2): 272 - 286. 10.15317/Scitech.2019.198
Vancouver OZDEMIR O VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES. Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi. 2019; 7(2): 272 - 286. 10.15317/Scitech.2019.198
IEEE OZDEMIR O "VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES." Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi, 7, ss.272 - 286, 2019. 10.15317/Scitech.2019.198
ISNAD OZDEMIR, OZGE. "VIBRATION ANALYSIS OF ROTATING TIMOSHENKO BEAMS WITH DIFFERENT MATERIAL DISTRIBUTION PROPERTIES". Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi 7/2 (2019), 272-286. https://doi.org/10.15317/Scitech.2019.198