Yıl: 2018 Cilt: 42 Sayı: 1 Sayfa Aralığı: 87 - 102 Metin Dili: İngilizce DOI: 10.3906/biy-1711-9 İndeks Tarihi: 09-07-2020

Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis

Öz:
Polyphosphate polymer (polyP) plays a very important role in every living cell. Synthesis of this linear polymer of phosphate(Pi) residues is catalyzed by the polyphosphate kinase (PPK) enzyme. It was shown that high levels of intracellular polyphosphatestimulated endotoxin production by Bacillus thuringiensis subsp. israelensis (Bti). In this study, proteomic analysis of the wild-typeand two mutant strains, overexpressing the ppk gene (Bti pHTppk) and without the ppk gene (Bti ∆ppk), were used to clarify therelation between polyP and endotoxin production. Intracellular proteins were separated by two-dimensional gel electrophoresis; 41spots of interest (proteins differentially expressed) were obtained and 35 of them were identified by mass spectrometry. Analysis of theprotein profiles showed that there is a general decrease in the expression levels of proteins related with energy metabolism, amino acidmetabolism, and purine biosynthesis in both Bti pHTppk and Bti ∆ppk. Gluconeogenesis and fatty acid metabolism were also sloweddown in both strains, whereas expression of stress response proteins increased compared to the wild-type. These results suggested thatchanges in polyP concentration cause a general stress condition inside the cell, which in turn stimulates secondary metabolite synthesis.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U (2015). Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv 33: 798-811.
  • Agnihotri G, Liu HW (2003). Enoyl-CoA hydratase: reaction, mechanism, and inhibition. Bioorg Med Chem 11: 9-20.
  • Aguilar-Rodríguez J, Sabater-Muñoz B, Montagud-Martínez R, Berlanga V, Alvarez-Ponce D, Wagner A, Fares MA (2016). The molecular chaperone DnaK is a source of mutational robustness. Genome Biol Evol 8: 2979-2991.
  • Aich S, Imabayashi F, Delbaere LT (2003). Expression, purification, and characterization of a bacterial GTP-dependent PEP carboxykinase. Protein Expr Purif 31: 298-304.
  • Al-Yahyaee SAS, Ellar DJ (1995). Maximal toxicity of cloned CytA δ-endotoxin from Bacillus thuringiensis subsp. israelensis requires proteolytic processing from both the N- and C-termini. Microbiology 141: 3141-3148.
  • Ambrus A, Torocsik B, Tretter L, Ozohanics O, Adam-Vizi V (2011). Stimulation of reactive oxygen species generation by diseasecausing mutations of lipoamide dehydrogenase. Hum Mol Genet 20: 2984-2995.
  • Arn EA, Abelson JN (1996). The 2’-5’ RNA ligase of Escherichia coli: purification, cloning, and genomic disruption. J Biol Chem 271: 31145-31153.
  • Attwood PV, Wieland T (2015). Nucleoside diphosphate kinase as protein histidine kinase. Naunyn Schmiedebergs Arch Pharmacol 388: 153-160.
  • Blank L, Green J, Guest JR (2002). AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology 148: 133-146.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
  • Breton R, Watson D, Yaguchi M, Lapointe J (1990). GlutamyltRNA synthetases of Bacillus subtilis 168T and of Bacillus stearothermophilus. Cloning and sequencing of the gltX genes and comparison with other aminoacyl-tRNA synthetases. J Biol Chem 265: 18248-18255.
  • Brown MR, Kornberg A (2008). The long and short of it - polyphosphate, PPK and bacterial survival. Trends Biochem Sci 33: 284-290. Caldas TD, Yaagoubi AE, Richarme G (1998). Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273: 11478-11482.
  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333.
  • Chakrabarty AM (1998). Nucleoside diphosphate kinase: role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol Microbiol 28: 875-882.
  • Chouayekh H, Virolle MJ (2002). The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol Microbiol 43: 919-930.
  • Cooper SJ, Leonard GA, McSweeney SM, Thompson AW, Naismith JH, Qamar S, Plater A, Berry A, Hunter WN (1996). The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure 4: 1303-1315.
  • Darwin AJ (2005). The phage-shock-protein response. Mol Microbiol 57: 621-628.
  • Debarbouille M, Gardan R, Arnaud M, Rapoport G (1999). Role of BkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 181: 2059-2066.
  • de Kok A, Hengeveld AF, Martin A, Westphal AH (1998). The pyruvate dehydrogenase multi-enzyme complex from Gramnegative bacteria. Biochim Biophys Acta 1385: 353-366.
  • Deuerling E, Bukau B (2004). Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit Rev Biochem Mol Biol 39: 261-277.
  • Donovan WP, Gonzalez JMJ, Gilbert MP, Dankocsik C (1988). Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to coleopteran larvae, and nucleotide sequence of the toxin gene. Mol Genet Genomics 214: 365-372.
  • Doruk T, Avican U, Camci IY, Gedik ST (2013). Overexpression of polyphosphate kinase gene (ppk) increases bioinsecticide production by Bacillus thuringiensis. Microbiol Res 168: 199- 203.
  • Doruk T, Gedik ST (2013). An efficient gene deletion system for Bacillus thuringiensis. Biologia 68: 358-364.
  • Doruk T, Girgin Ersoy Z, Öncel MS, Gedik ST (2016). High levels of polyphosphate kinase affect not only endotoxin production but also acid tolerance of Bacillus thuringiensis. Turk J Biol 40: 1168-1177.
  • Finney DJ, Stevens WL (1948). A table for the calculation of working probits and weights in probit analysis. Biometrika 35: 191-201.
  • Fricke B, Drossler K, Willhardt I, Schierhorn A, Menge S, Rucknagel P (2001). The cell envelope-bound metalloprotease (camelysin) from Bacillus cereus is a possible pathogenic factor. Biochim Biophys Acta 1537: 132-146.
  • Gagnon Y, Breton R, Putzer H, Pelchat M, Grunberg-Manago M, Lapointe J (1994). Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J Biol Chem 269: 7473-7482.
  • Grundy FJ, Waters DA, Allen SH, Henkin TM (1993). Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175: 7348-7355.
  • Gupta P, Ghosalkar A, Mishra S, Chaudhuri TK (2009). Enhancement of over expression and chaperone assisted yield of folded recombinant aconitase in Escherichia coli in bioreactor cultures. J Biosci Bioeng 107: 102-107.
  • Hines JK, Fromm HJ, Honzatko RB (2007). Structures of activated fructose-1,6-bisphosphatase from Escherichia coli. Coordinate regulation of bacterial metabolism and the conservation of the R-state. J Biol Chem 282: 11696-11704.
  • Huang M, Oppermann-Sanio FB, Steinbuchel A (1999). Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 181: 3837-3841.
  • Kawai K, Wang G, Okamoto S, Ochi K (2007). The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett 274: 311-315.
  • Kayser A, Weber J, Hecht V, Rinas U (2005). Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151: 693-706.
  • Kim HY, Schlictman D, Shankar S, Xie Z, Chakrabarty AM, Kornberg A (1998). Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol Microbiol 27: 717-725.
  • Kim KS, Rao NN, Fraley CD, Kornberg A (2002). Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. P Natl Acad Sci USA 99: 7675-7680.
  • Kornberg A, Rao NN, Ault-Riche D (1999). Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68: 89-125.
  • Kruger N, Oppermann FB, Lorenzl H, Steinbuchel A (1994). Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system. J Bacteriol 176: 3614-3630.
  • Lee HH, Kim DJ, Ahn HJ, Ha JY, Suh SW (2004). Crystal structure of T-protein of the glycine cleavage system. Cofactor binding, insights into H-protein recognition, and molecular basis for understanding nonketotic hyperglycinemia. J Biol Chem 279: 50514-50523.
  • Le Marechal P, Decottignies P, Marchand CH, Degrouard J, Jaillard D, Dulermo T, Froissard M, Smirnov A, Chapuis V, Virolle MJ (2013). Comparative proteomic analysis of Streptomyces lividans wild-type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis. Appl Environ Microbiol 79: 5907-5917.
  • Leyva-Vazquez MA, Setlow P (1994). Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol 176: 3903-3910.
  • Li L, Li Z, Chen D, Lu X, Feng X, Wright EC, Solberg NO, DunawayMariano D, Mariano PS, Galkin A et al. (2008). Inactivation of microbial arginine deiminases by L-canavanine. J Am Chem Soc 130: 1918-1931.
  • Marina A, Alzari PM, Bravo J, Uriarte M, Barcelona B, Fita I, Rubio V (1999). Carbamate kinase: new structural machinery for making carbamoyl phosphate, the common precursor of pyrimidines and arginine. Protein Sci 8: 934-940.
  • Matte A, Goldie H, Sweet RM, Delbaere LT (1996). Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J Mol Biol 256: 126-143.
  • Merz F, Boehringer D, Schaffitzel C, Preissler S, Hoffmann A, Maier T, Rutkowska A, Lozza J, Ban N, Bukau B et al. (2008). Molecular mechanism and structure of Trigger Factor bound to the translating ribosome. EMBO J 27: 1622-1632.
  • Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renne T (2009). Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139: 1143-1156.
  • Murphy TM, Nilsson AY, Roy I, Harrop A, Dixon K, Keshavarz T (2011). Enhanced intracellular Ca2+ concentrations in Escherichia coli and Bacillus subtilis after addition of oligosaccharide elicitors. Biotechnol Lett 33: 985-991.
  • Nair R, Roy I, Bucke C, Keshavarz T (2009). Quantitative PCR study on the mode of action of oligosaccharide elicitors on penicillin G production by Penicillium chrysogenum. J Appl Microbiol 107: 1131-1139.
  • Nishiyama Y, Massey V, Takeda K, Kawasaki S, Sato J, Watanabe T, Niimura Y (2001). Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria. J Bacteriol 183: 2431-2438.
  • Nisnevitch M, Sigawi S, Cahan R, Nitzan Y (2010). Isolation, characterization and biological role of camelysin from Bacillus thuringiensis subsp. israelensis. Curr Microbiol 61: 176-183.
  • Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K, Doi Y (2005). Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71: 4297-4306.
  • Okamura-Ikeda K, Hosaka H, Maita N, Fujiwara K, Yoshizawa AC, Nakagawa A, Taniguchi H (2010). Crystal structure of aminomethyltransferase in complex with dihydrolipoylH-protein of the glycine cleavage system: implications for recognition of lipoyl protein substrate, disease-related mutations, and reaction mechanism. J Biol Chem 285: 18684- 18692.
  • Pai VR, Rajaram V, Bisht S, Bhavani BS, Rao NA, Murthy MR, Savithri HS (2009). Structural and functional studies of Bacillus stearothermophilus serine hydroxymethyltransferase: the role of Asn(341), Tyr(60) and Phe(351) in tetrahydrofolate binding. Biochem J 418: 635-642.
  • Perham RN, Packman LC, Radford SE (1987). 2-Oxo acid dehydrogenase multi-enzyme complexes: in the beginning and halfway there. Biochem Soc Symp 54: 67-81.
  • Pettersson I, Kurland CG (1980). Ribosomal protein L7/L12 is required for optimal translation. P Natl Acad Sci USA 77: 4007-4010.
  • Pratt LA, Kolter R (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30: 285-293.
  • Promdonkoy B, Promdonkoy P, Panyim S (2005). Co-expression of Bacillus thuringiensis Cry4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae. FEMS Microbiol Lett 252: 121-126.
  • Radman R, Bland Elliot J, Sangworachat N, Bucke C, Keshavarz T (2006). Effects of oligosaccharides and polysaccharides on the generation of reactive oxygen species in different biological systems. Biotechnol Appl Biochem 44: 129-133.
  • Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H et al. (2007). Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6: 10.
  • Rao NN, Gomez-Garcia MR, Kornberg A (2009). Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78: 605-647.
  • Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A (2000). Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. P Natl Acad Sci USA 97: 9636-9641.
  • Ratnayake-Lecamwasam M, Serror P, Wong KW, Sonenshein AL (2001). Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15: 1093-1103.
  • Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9: 670-675.
  • Rodriguez E, Gramajo H (1999). Genetic and biochemical characterization of the alpha and beta components of a propionyl-CoA carboxylase complex of Streptomyces coelicolor A3(2). Microbiology 145: 3109-3119.
  • Rodriguez-Pombo P, Perez-Cerda C, Desviat LR, Perez B, Ugarte M, Rodriguez-Pombo P (2002). Transfection screening for defects in the PCCA and PCCB genes encoding propionyl-CoA carboxylase subunits. Mol Genet Metab 75: 276-279.
  • Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG (2006). Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 70: 344-361.
  • Shah CP, Kharkar PS (2015). Inosine 5’-monophosphate dehydrogenase inhibitors as antimicrobial agents: recent progress and future perspectives. Future Med Chem 7: 1415-1429.
  • Shi X, Rao NN, Kornberg A (2004). Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. P Natl Acad Sci USA 101: 17061-17065.
  • Singh R, Singh M, Arora G, Kumar S, Tiwari P, Kidwai S (2013). Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. J Bacteriol 195: 2839-2851.
  • Siranosian KJ, Ireton K, Grossman AD (1993). Alanine dehydrogenase (ald) is required for normal sporulation in Bacillus subtilis. J Bacteriol 175: 6789-6796.
  • Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006). Polyphosphate modulates blood coagulation and fibrinolysis. P Natl Acad Sci USA 103: 903-908.
  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004). Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24: 7779-7788.
  • Swigonova Z, Mohsen AW, Vockley J (2009). Acyl-CoA dehydrogenases: dynamic history of protein family evolution. J Mol Evol 69: 176- 193.
  • Tammenkoski M, Koivula K, Cusanelli E, Zollo M, Steegborn C, Baykov AA, Lahti R (2008). Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. Biochemistry 47: 9707-9713.
  • Tanaka Y, Hosaka T, Ochi K (2010). Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J Antibiot 63: 477-481.
  • Tretter L, Adam-Vizi V (2004). Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24: 7771-7778.
  • Varela C, Mauriaca C, Paradela A, Albar JP, Jerez CA, Chavez FP (2010). New structural and functional defects in polyphosphate deficient bacteria: a cellular and proteomic study. BMC Microbiol 10: 7.
  • Wang J, Mei H, Zheng C, Qian H, Cui C, Fu Y, Su J, Liu Z, Yu Z, He J (2013). The metabolic regulation of sporulation and parasporal crystal formation in Bacillus thuringiensis revealed by transcriptomics and proteomics. Mol Cell Proteomics 12: 1363-1376.
  • Wang L, Fraley CD, Faridi J, Kornberg A, Roth RA (2003). Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. P Natl Acad Sci USA 100: 11249-11254.
  • Weng Y, Chen F, Liu Y, Zhao Q, Chen R, Pan X, Liu C, Cheng Z, Jin S, Jin Y et al. (2016). Pseudomonas aeruginosa enolase influences bacterial tolerance to oxidative stresses and virulence. Front Microbiol 7: 1999.
  • Wiegand G, Remington SJ (1986). Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Biophys Chem 15: 97-117.
  • Yalım Camcı IY, Doruk T, Avican U, Tunca Gedik S (2012). Deletion of polyphosphate kinase gene (ppk) has a stimulatory effect on actinorhodin production by Streptomyces coelicolor A3(2). Turk J Biol 36: 373-380.
APA YEŞİLIRMAK F, DORUK T, YILMAZ Ş, Tunca Gedik S (2018). Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. , 87 - 102. 10.3906/biy-1711-9
Chicago YEŞİLIRMAK Filiz,DORUK Tuğrul,YILMAZ Şerif,Tunca Gedik Sedef Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. (2018): 87 - 102. 10.3906/biy-1711-9
MLA YEŞİLIRMAK Filiz,DORUK Tuğrul,YILMAZ Şerif,Tunca Gedik Sedef Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. , 2018, ss.87 - 102. 10.3906/biy-1711-9
AMA YEŞİLIRMAK F,DORUK T,YILMAZ Ş,Tunca Gedik S Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. . 2018; 87 - 102. 10.3906/biy-1711-9
Vancouver YEŞİLIRMAK F,DORUK T,YILMAZ Ş,Tunca Gedik S Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. . 2018; 87 - 102. 10.3906/biy-1711-9
IEEE YEŞİLIRMAK F,DORUK T,YILMAZ Ş,Tunca Gedik S "Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis." , ss.87 - 102, 2018. 10.3906/biy-1711-9
ISNAD YEŞİLIRMAK, Filiz vd. "Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis". (2018), 87-102. https://doi.org/10.3906/biy-1711-9
APA YEŞİLIRMAK F, DORUK T, YILMAZ Ş, Tunca Gedik S (2018). Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. Turkish Journal of Biology, 42(1), 87 - 102. 10.3906/biy-1711-9
Chicago YEŞİLIRMAK Filiz,DORUK Tuğrul,YILMAZ Şerif,Tunca Gedik Sedef Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. Turkish Journal of Biology 42, no.1 (2018): 87 - 102. 10.3906/biy-1711-9
MLA YEŞİLIRMAK Filiz,DORUK Tuğrul,YILMAZ Şerif,Tunca Gedik Sedef Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. Turkish Journal of Biology, vol.42, no.1, 2018, ss.87 - 102. 10.3906/biy-1711-9
AMA YEŞİLIRMAK F,DORUK T,YILMAZ Ş,Tunca Gedik S Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. Turkish Journal of Biology. 2018; 42(1): 87 - 102. 10.3906/biy-1711-9
Vancouver YEŞİLIRMAK F,DORUK T,YILMAZ Ş,Tunca Gedik S Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis. Turkish Journal of Biology. 2018; 42(1): 87 - 102. 10.3906/biy-1711-9
IEEE YEŞİLIRMAK F,DORUK T,YILMAZ Ş,Tunca Gedik S "Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis." Turkish Journal of Biology, 42, ss.87 - 102, 2018. 10.3906/biy-1711-9
ISNAD YEŞİLIRMAK, Filiz vd. "Comparative proteomic analysis of Bacillus thuringiensis wild-type and two mutant strains disturbed in polyphosphate homeostasis". Turkish Journal of Biology 42/1 (2018), 87-102. https://doi.org/10.3906/biy-1711-9