Yıl: 2019 Cilt: 40 Sayı: 3 Sayfa Aralığı: 293 - 325 Metin Dili: Türkçe DOI: 10.17824/yerbilimleri.633036 İndeks Tarihi: 10-06-2020

Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı

Öz:
Eski bir magmatik yay olan Doğu Karadeniz Bölgesi (Pontidler) Sakarya Zonu içindeyer alan andezit ve porfirik dasit daykları Geç Kretase yaşlı volkanitleri kesmektedir.Andezit ve porfirik dasit daykları porfirik doku sergilemektedir. Andezitler başlıcaplajiyoklas ve ojit minerallerinden ibaret olup, plajiyoklaslar elek dokusu ve polisentetik ikizlenme göstermektedir. Ojit minerallerinin kenar kısımlarında opak mineral oluşumları yaygındır. Porfirik dasitler ise kuvars, plajiyoklas, amfibol ve biyotit minerallerinden oluşmakta olup, kuvars kristallerinin kenarları kısmen yenmiştir. Plajiyoklaslar yaygın olarak serizitleşmiş, daha az oranda kalsitleşmiştir. Amfiboller hidrotermal ayrışma sonucu klorit, karbonat (kalsit ve ankerit) ve opak minerallere, biyotitler ise genel olarak kloritlere dönüşmüştür. Ana oksit ve iz element değişim diyagramlarındaki düzgün yönsemeleri ve mineral ayrımlaşma diyagramlarındaki durumları, daykların gelişiminde fraksiyonel kristalleşmenin etkili olduğunu göstermektedir. Plajiyoklas ve ojit ayrımlaşmasının andezit daykların gelişiminde, hornblend ve plajiyoklas ayrımlaşmasının ise porfirik dasitlerin gelişiminde etkili olduğu belirlenmiştir. Zenginleşmiş okyanus ortası sırtı bazaltlara (Z-OOSB) göre normalleştirilmiş iz element diyagramında negatif Nb, P2O5 ve TiO2 anomalileri olup, büyük iyon çaplı elementler (BİYE) yüksek çekim alanlı elementlere (YÇAE) nazaran daha fazla zenginleşmiştir. Düşük Nb/U ile yüksek La/Nb ve Th/Nb oranları, andezit ve porfirik dasit dayklarının kıtasal kabuk kirlenmesinden etkilendiğini belirtmektedir. Sonuç olarak, daykların yay ortamında, Geç Kretase sonlarına doğru benzer kökenli ve yitim ilişkili metasomatize olmuş bir manto kaynağından türemiş oldukları düşünülmektedir.
Anahtar Kelime:

Geochemistry of the Zigana Mountain (Gümüşhane, NE Turkey) Dykes and Their Geological Meaning

Öz:
The andesite and porphyritic dacite dykes in the Sakarya Zone of the Eastern Black Sea Region (Pontides), an ancient magmatic arc, cut through the Late Cretaceous volcanic rocks. Andesite and porphyritic dacite dykes show porphyritic texture. Andesites consist mainly of plagioclase and augite minerals and plagioclases show sieve texture and polysynthetic twinning. Opaque mineral formations are common on the marginal parts of augite minerals. Porphyritic dacites consist of quartz, plagioclase, amphibole and biotite minerals and the edges of quartz crystals are partially corroded. Plagioclases are commonly sericitized and less calcitized. As a result of hydrothermal alteration, amphibole decomposed to chlorite, carbonate (calcite and ankerite) and opaque minerals, and biotite to chlorite. The uniform orientations in the main oxide and trace element exchange diagrams and the states in the mineral separation diagrams show that fractional crystallization is effective in the development of dykes. It was determined that plagioclase and augite differentiation was effective in the development of andesite dykes, and hornblende and plagioclase differentiation in the development of porphyritic dacites. In the normalized trace element diagram according to enriched mid-ocean ridge basalts (E-MORB), there are negative Nb, P2O5 and TiO2 anomalies, and large ion-diameter elements (LILE) are more enriched than high-gravity elements (HFSE). LowNb/U and high La/Nb and Th/Nb ratios indicate that andesite and porphyritic dacite dykes are affected by continental crust contamination. As a result, it is thought that the dikes are derived from a metasomatized mantle source, a similar origin and related to subduction, towards the end of Late Cretaceous in the arc environment
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adamia, S.A., Lordkipanidze, M.B., Zakariadze, G.S., 1977. Evolution of an active continental margin as examplified by the Alpine history of Caucasus. Tectonophysics, 40, 183-199.
  • Akaryalı, E., Akbulut, K., 2016. Constraints of C-O-S isotope compositions and the origin of the Ünlüpınar volcanic-hosted epithermal Pb-Zn±Au deposit, Gümüşhane, NE Turkey. Journal of Asian Earth Sciences, 117, 119-134.
  • Akaryalı, E., 2016. Geochemical, fluid inclusion and isotopic (O, H and S) constraints on the origin of Pb-Zn±Au vein-type mineralizations in the Eastern Pontides Orogenic Belt (NE Turkey). Ore Geology Reviews, 74, 1-14.
  • Akıncı, Ö.T., 1984. The Eastern Pontide volcano-sedimentary belt and associated massive sulphide deposits. In: J.E. Dixon and A.H.F. Robertson (eds.), The Geological Evolution of the Eastern Mediterranean, Geological Society, London, Special Publications, 17, 415-428.
  • Arslan, M., Tüysüz, N., Korkmaz, S., Kurt, H., 1997. Geochemistry and petrogenesis of the eastern pontide volcanic rocks, Northeast Turkey. Chemie der Erde/Geochemistry, 57, 157-187.
  • Aydın, F., Karslı, O., Chen, B., 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos, 104, 249-266.
  • Aydınçakır, E., 2014. The petrogenesis of Early Eocene non-adakitic volcanism in NE Turkey: Constraints on the geodynamic implications. Lithos, 208-209, 361-377.
  • Aydınçakır, E., 2016. Subduction-related Late Cretaceous high-K volcanism in the Central Pontides orogenic belt: Constraints on geodynamic implications, Geodinamica Acta, 28(4), 379-411.
  • Barrett, T.J., MacLean, W.H., 1991. Chemical, mass, and oxygen isotope changes during extreme hydrothermal alteration of an Archean rhyolite, Noranda, Quebec. Economic Geology, 86 (2), 406-414.
  • Barrett, T.J., Cattalani, S., MacLean, W.H., 1993. Volcanic lithogeochemistry and alteration at the Delbridge massive sulfide deposit, Noranda, Quebec. Journal of Geochemical Exploration, 48 (2), 135-173.
  • Barrett, T.J., Cattalani, S., Hoy, L., Riopel, J., Lafleur, P.-J., 1992. Massive sulfide deposits of the Noranda area, Quebec. IV. The Mobrun mine. Canadian Journal of Earth Sciences, 29, 1349-1374.
  • Bektaş, O., Pelin, S., Korkmaz, S., 1984. Doğu Pontid yay gerisi havzasında manto yükselimi ve polijenetik ofiyolit olgusu. TJK Ketin Sempozyumu, pp. 175-188.
  • Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K., Özgür, S., 1995. Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): The formation of carbonates, breccias and turbidites as evidences of a drowned platform. Geologia, 57, 1-2, 233-244.
  • Briggs, R.M., McDonough, W.F., 1990. Contemporaneous Convergent Margin and Intraplate Magmatism, North Island, New Zealand. Journal of Petrology, 3 (14), 813-851.
  • Dokuz, A., 2011. A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: Köse composite pluton. Gondwana Research, 19, 926-944.
  • Eyüboğlu, Y., Santosh, M., Yi, K., Tüysüz, N., Korkmaz, S., Dudas, F.O., Akaryalı, E., Bektaş, O., 2014. The Eastern Black Sea-type volcanogenic massive sulfide deposits: Geochemistry, zircon U–Pb geochronology and an overview of the geodynamics of ore genesis. Ore Geology Reviews, 59, 29-54.
  • Faure, G., Mensing, T.M., 2005. Isotope Principle and Applications. 3rd Edition, John Wiley & Sons, Hoboken Gücer, M.A., Aydınçakır, E., Yücel, C., Akaryalı, E., 2017. Tersiyer Yaşlı Altınpınar Hornblendli Andezitlerinin (Torul-Gümüşhane) Petrografisi, Mineral Kimyası ve P-T Kristalleşme Koşulları. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 7 (2), 236-267.
  • Hollanda, M.H.B.M., Pimentel, M.M., Oliveira, D.C., de Sá, E.F.J., 2006. Lithosphereasthenosphere interaction and the origin of Cretaceous tholeiitic magmatism in Northeastern Brazil: Sr-Nd-Pb isotopic evidence. Lithos, 86 (1-2), 34-49.
  • Huston, D.L., 1993. The Effect Of Alteration and Metamorphism on Wall Rock to the Balcooma and Dry River South Volcanic-Hosted Massive Sulfide Deposits, Queensland, Australia. Journal of Geochemical Exploration, 48, 277-307.
  • Innocenti, F., Mazzuoli, R., Pasquaré, G., Serri, G., Villari, L., 1980. Geology of the volcanic area north of Lake Van (Turkey). Geologische Rundschau, 69, 292-322.
  • Kaygusuz, A., Arslan, M., Siebel, W., Sipahi, F., İlbeyli, N., 2012. Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey. InternationalGeology Review, 54, 1776- 1800.
  • Kaygusuz, A., Arslan, M., Siebel, W., Sipahi, F., İlbeyli, N., Temizel, İ., 2014. La-Icp Ms zircon dating and whole-rock Sr-Nd-Pb-O isotope geochemistry of the Camiboğazı Pluton, eastern Pontides, NE Turkey: Petrogenesis and Tectonic Implications of Arc-Related I-Type Magmatism. Lithos, 192-195, 271-290.
  • Kaygusuz, A., Arslan, M., Sipahi, F., Temizel, İ., 2016. U-Pb zircon chronology and petrogenesis of carboniferous plutons in the northern part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic magmatism and geodynamic evolution. Gondwana Research, 39, 327-346.
  • Kaygusuz, A., Sipahi, F., İlbeyli, N., Arslan, M., Chen, B., Aydınçakır, E., 2013.
  • Petrogenesis of the Late Cretaceous Turnagöl intrusion in the eastern Pontides: implications for magma genesis in the arc setting. Geoscience Frontiers, 4, 423- 438.
  • Lentz, D.R., 1996. Trace-element systematics of felsic volcanic rocks associated with massive-sulphide deposits in the Bathurst Mining Camp: petrogenetic, tectonic and chemostratigraphic implications for VMS deposits. In: D.A. Wyman (ed.), Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Geological Association of Canada, Short Course Notes 12, pp. 359-402.
  • Lentz, D.R., 1999. Petrology, geochemistry, and oxygen isotope interpretation of felsic volcanic rocks and related rocks hosting the Brunswick No. 6 and No. 12 massive sulfide deposits, Bathurst Mining Camp, New Brunswick, Canada. Economic Geology, 94, 57-86.
  • MacLean, W.H., Kranidiotis, P., 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82, 951-962.
  • MacLean, W.H., 1990. Mass changes in altered rock series. Mineralium Deposita, 25, 44-49.
  • Nicholls, I.A., Harris, K.L., 1980. Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochimica et Cosmochimica Acta, 44 (2), 287-308.
  • Okay, A.İ., Tüysüz, O., 1999. Tethyan Sutures of Northern Turkey. The Mediterranean Basin: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 475-515.
  • Özsayar, T., Pelin, S., Gedikoğlu, A., 1981, Doğu Pontidler’de Kretase: KTÜ Yerbilimleri Dergisi, 1, 2, 65-114.
  • Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implication of Ti, Zr, Y and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69, 33-47.
  • Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S. (ed.), Andesites, Orogenic Andesites and Related Rocks. Wiley and Sons, Chichester, 525-548.
  • Pearce, J.A., 1996. A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D.A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12, 79-113.
  • Pearce, J.A., Cann, J.R., 1973. Tectonic Setting of Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19, 290-300.
  • Pejatoviç, S., 1979. Metallogeny of the pontid-type massive sulphide deposits, mineral geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick horizon, bathurst mining camp, New Brunswick, Canadian Journal of Earth Sciences, 33, 252-283.
  • Rocha-Júnior, E.R.V., Marques, L.S., Babinski, M., Nardy, A.J.R., Figueiredo, A.M.G., Machado, F.B., 2013. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná continental flood basalts (Brazil). Journal of South American Earth Sciences, 46, 9-25.
  • Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Johhn Wiley & Sons, New York, 352 p.
  • Ross, P.-S., Bédard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences, 46 (11), 823-839.
  • Rudnick, R.L.,, Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L. (ed.), The crust. Treatise on Geochemistry, 3, 1-64.
  • Saydam Eker, Ç., Sipahi, F., Kaygusuz, A., 2012. Trace and Rare Earth Elements as Indicators of Provenance and Depositional Environments of Lias Cherts in Gumushane NE Turkey. Chemie der Erde, 72, 167-177.
  • Shriver, N.A., MacLean, W.H., 1993. Mass, volume and chemical changes in the alteration zone at the Norbec mine, Noranda, Quebec. Mineralium Deposita, 28 (3), 157-166.
  • Sipahi, F., Sadıklar, M.B., 2010. The alteration mineralogy and mass change of the Zigana(Gümüşhane) volcanics of NE Turkey. Geological Bulletin of Turkey, 53, 122-155. Sipahi, F., Sadıklar, M.B., 2014. Geochemistry of dacitic volcanics in the eastern Pontides (NE Turkey). Geochemistry International, 4, 329-349.
  • Sipahi, F., 2005. Zigana dağı (Torul-Gümüşhane) volkanitlerindeki hidrotermal ayrışmaların mineraloji ve jeokimyası, Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon. Sipahi, F., 2011. Formation of skarns at Gümüşhane (Northeastern Turkey). Neues Jahrb Mineral Abh (J. Min. Geochem.), 188, 169-190.
  • Sipahi, F., 2017. Kalınçam (Tonya-Trabzon, KD Türkiye) yöresi Geç Kretase yaşlı volkanitlerin jeokimyası ve petrojenezi. GÜFBED/GUSTIJ, 7 (2), 102-127.
  • Sipahi, F., 2019. Nature of the Tourmaline in Q-Porphyry from Eastern Pontide (NE Turkey): An U-Pb zircon Age, Geochemistry and Isotopic Approach. Periodico di Mineralogica, 88, Doi: 10.2451/2019PM859.
  • Sipahi, F., Akpınar, İ., Saydam Eker, Ç., Kaygusuz, A., Vural, A., Yılmaz, M., 2017. Formation of the Eğrikar (Gümüşhane) Fe-Cu skarn type mineralization in NE Turkey: U-Pb zircon age, lithogeochemistry, mineral chemistry, fluid inclusion, and O-H-C-S isotopic compositions. Journal of Geochemical Exploration, 182, Part A, 32-52.
  • Sipahi, F., Kaygusuz, A., Saydam Eker, Ç., Vural, A., Akpınar, İ., 2018. Late Cretaceous Arc Igneous Activity: The Eğrikar Monzogranite Example. International Geology Review, 60, 382-400.
  • Sipahi, F., Sadıklar, M.B., Şen, C., 2014. The geochemical and Sr-Nd isotopic characteristics of Murgul (Artvin) volcanics in the Eastern Black Sea Region (NE Turkey). Chemie der Erde/Geochemistry, 74, 331-342.
  • Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42, 313-345.
  • Şengör, A.M.C., Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75, 181-241.
  • Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Blackwell, Oxford, U.K., 312 p.
  • Temizel, İ., Arslan, M., Ruffet, G., Peucat, J.J., 2012. Petrochemistry, geochronology and Sr-Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-related origin and mantle source characteristics. Lithos, 128-131, 126-147.
  • Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
  • Winchester, J.A., Floyd, P.A., 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28, 459-469.
APA SİPAHİ F, GÜCER M, SADIKLAR M (2019). Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. , 293 - 325. 10.17824/yerbilimleri.633036
Chicago SİPAHİ Ferkan,GÜCER Mehmet Ali,SADIKLAR Münür Burhan Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. (2019): 293 - 325. 10.17824/yerbilimleri.633036
MLA SİPAHİ Ferkan,GÜCER Mehmet Ali,SADIKLAR Münür Burhan Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. , 2019, ss.293 - 325. 10.17824/yerbilimleri.633036
AMA SİPAHİ F,GÜCER M,SADIKLAR M Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. . 2019; 293 - 325. 10.17824/yerbilimleri.633036
Vancouver SİPAHİ F,GÜCER M,SADIKLAR M Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. . 2019; 293 - 325. 10.17824/yerbilimleri.633036
IEEE SİPAHİ F,GÜCER M,SADIKLAR M "Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı." , ss.293 - 325, 2019. 10.17824/yerbilimleri.633036
ISNAD SİPAHİ, Ferkan vd. "Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı". (2019), 293-325. https://doi.org/10.17824/yerbilimleri.633036
APA SİPAHİ F, GÜCER M, SADIKLAR M (2019). Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. Yerbilimleri, 40(3), 293 - 325. 10.17824/yerbilimleri.633036
Chicago SİPAHİ Ferkan,GÜCER Mehmet Ali,SADIKLAR Münür Burhan Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. Yerbilimleri 40, no.3 (2019): 293 - 325. 10.17824/yerbilimleri.633036
MLA SİPAHİ Ferkan,GÜCER Mehmet Ali,SADIKLAR Münür Burhan Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. Yerbilimleri, vol.40, no.3, 2019, ss.293 - 325. 10.17824/yerbilimleri.633036
AMA SİPAHİ F,GÜCER M,SADIKLAR M Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. Yerbilimleri. 2019; 40(3): 293 - 325. 10.17824/yerbilimleri.633036
Vancouver SİPAHİ F,GÜCER M,SADIKLAR M Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. Yerbilimleri. 2019; 40(3): 293 - 325. 10.17824/yerbilimleri.633036
IEEE SİPAHİ F,GÜCER M,SADIKLAR M "Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı." Yerbilimleri, 40, ss.293 - 325, 2019. 10.17824/yerbilimleri.633036
ISNAD SİPAHİ, Ferkan vd. "Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı". Yerbilimleri 40/3 (2019), 293-325. https://doi.org/10.17824/yerbilimleri.633036