Yıl: 2020 Cilt: 7 Sayı: 2 Sayfa Aralığı: 192 - 200 Metin Dili: İngilizce DOI: 10.14744/nci.2019.92499 İndeks Tarihi: 18-09-2020

Food additives and microbiota

Öz:
The use of food additives in food production is inevitable in this modern world. Although only a safe amount of food additivesis approved, their safety has always been questioned. To our knowledge, the effects of food additives on microbiota havenot been investigated in a detailed manner in the literature so far. In this review, the effects of artificial sweeteners, sugaralcohols, emulsifiers, food colorants, flavor enhancers, thickeners, anticaking agents, and preservatives on microbiota werereviewed. Even though most of the results illustrated negative outcomes, few of them showed positive effects of food additives on the microbiota. Although it is difficult to obtain exact results due to differences in experimental animals and models,said the findings suggest that nonnutritive synthetic sweeteners may lead to glucose intolerance by affecting microbiota anda part of sugar alcohols show similar effects like probiotics.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Lederberg J. Infectious history. Science 2000;288:287–93.
  • 2. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut 2017;222:1–9.
  • 3. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014;514:181–6.
  • 4. Bian X, Tu P, Chi L, Gao B, Ru H, Lu K. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol 2017;107:530–9.
  • 5. Romo-Romo A, Aguilar-Salinas CA, Brito-Córdova GX, Gómez-Díaz RA, Almeda-Valdes P. Sucralose decreases insulin sensitivity in healthy subjects: a randomized controlled trial. Am J Clin Nutr 2018;108:485– 91.
  • 6. Grotz VL, Pi-Sunyer X, Porte D Jr, Roberts A, Richard Trout J. A 12- week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regul Toxicol Pharmacol 2017;88:22–33.
  • 7. Palmnäs MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One 2014;9:e109841.
  • 8. Frankenfeld CL, Sikaroodi M, Lamb E, Shoemaker S, Gillevet PM. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann Epidemiol 2015;25:736–42.
  • 9. Palmnäs MS, Cowan TE, Bomhof MR, Su J, Reimer RA, Vogel HJ, et al. Low-dose aspartame consumption differentially affects gut microbio ta-host metabolic interactions in the diet-induced obese rat. PLoS One 2014;9:e109841.
  • 10. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One 2017;12:e0178426.
  • 11. Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav 2015;152:450–5.
  • 12. Daly K, Darby AC, Hall N, Nau A, Bravo D, Shirazi-Beechey SP. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutr 2014;111 Suppl 1:S30–5.
  • 13. Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J Toxicol Environ Health A 2008;71:1415–29.
  • 14. Beards E, Tuohy K, Gibson G. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. Br J Nutr 2010;104:701–8.
  • 15. Oku T, Akiba M, Lee MH, Moon SJ, Hosoya N. Metabolic fate of ingested [14C]-maltitol in man. J Nutr Sci Vitaminol (Tokyo) 1991;37:529–44.
  • 16. Lynch H, Milgrom P. Xylitol and dental caries: an overview for clinicians. J Calif Dent Assoc 2003;31:205–9.
  • 17. Campus G, Cagetti MG, Sacco G, Solinas G, Mastroberardino S, Lingström P. Six months of daily high-dose xylitol in high-risk schoolchildren: a randomized clinical trial on plaque pH and salivary mutans streptococci. Caries Res 2009;43:455–61.
  • 18. Goto Y, Anzai M, Chiba M, Ohneda A, Kawashima S. Clinical effects of xylitol on carbohydrate and lipid metabolism in diabetes. Lancet 1965;2:918–21.
  • 19. Amo K, Arai H, Uebanso T, Fukaya M, Koganei M, Sasaki H, et al. Effects of xylitol on metabolic parameters and visceral fat accumulation. J Clin Biochem Nutr 2011;49:1–7.
  • 20. Tamura M, Hoshi C, Hori S. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice. Int J Mol Sci 2013;14:23993–4007.
  • 21. Salminen S, Salminen E, Koivistoinen P, Bridges J, Marks V. Gut microflora interactions with xylitol in the mouse, rat and man. Food Chem Toxicol 1985;23:985–90.
  • 22. Yebra MAJ, Pérez-Martı Nez G. Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus casei. Microbiology 2002;148:2351–9.
  • 23. Rhodes MW, Kator H. Sorbitol-fermenting bifidobacteria as indicators of diffuse human faecal pollution in estuarine watersheds. J Appl Microbiol 1999;87:528–35.
  • 24. Farnworth ER. In: Wildman REC, editor. Handbook of Nutraceutilcals and Functional Foods. 2001; 407 - 422. Boca Raton, FL: CRC Press.
  • 25. Salminen S, Salminen E, Bridges J, Marks V. The effects of sorbitol on the gastrointestinal microflora in rats. Z Ernahrungswiss 1986;25:91–5.
  • 26. Sarmiento-Rubiano LA, Zúñiga M, Pérez-Martínez G, Yebra MJ. Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine. Res Microbiol 2007;158:694–701.
  • 27. Goossens J, Röper H. Erythritol: a new sweetener. Food Sci Technol Today 1994;8:144–9.
  • 28. Bernt WO, Borzelleca JF, Flamm G, Munro IC. Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol 1996;24:S191–7.
  • 29. Bornet FR, Blayo A, Dauchy F, Slama G. Plasma and urine kinetics of erythritol after oral ingestion by healthy humans. Regul Toxicol Pharmacol 1996;24:S280–5.
  • 30. Ishikawa M, Miyashita M, Kawashima Y, Nakamura T, Saitou N, Modderman J. Effects of oral administration of erythritol on patients with diabetes. Regul Toxicol Pharmacol 1996;24:S303–8.
  • 31. Noda K, Oku T. Metabolism and disposition of erythritol after oral administration to rats. J Nutr 1992;122:1266–72.
  • 32. Arrigoni E, Brouns F, Amadò R. Human gut microbiota does not ferment erythritol. Br J Nutr 2005;94:643–6.
  • 33. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015;519:92–6.
  • 34. Singh RK, Wheildon N, Ishikawa S. Food Additive P-80 Impacts Mouse Gut Microbiota Promoting Intestinal Inflammation, Obesity and Liver Dysfunction. SOJ Microbiol Infect Dis 2016;4.
  • 35. Dimitrijevic D, Shaw AJ, Florence AT. Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells. J Pharm Pharmacol 2000;52:157–62.
  • 36. Mercier-Bonin M, Despax B, Raynaud P, Houdeau E, Thomas M. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles. Crit Rev Food Sci Nutr 2018;58:1023–32.
  • 37. Zhukova LV, Kiwi J, Nikandrov VV. TiO2 nanoparticles suppress Escherichia coli cell division in the absence of UV irradiation in acidic conditions. Colloids Surf B Biointerfaces 2012;97:240–7.
  • 38. Taylor AA, Marcus IM, Guysi RL, Walker SL. Metal oxide nanoparticles induce minimal phenotypic changes in a model colon gut microbiota. Environ Eng Sci 2015;32:602–12.
  • 39. Liu P, Duan W, Wang Q, Li X. The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf B Biointerfaces 2010;78:171–6.
  • 40. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 2011;51:1872–81.
  • 41. Feng ZM, Li TJ, Wu L, Xiao DF, Blachier F, Yin YL. Monosodium LGlutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs. Obes Facts 2015;8:87–100.
  • 42. Jiang T, Gao X, Wu C, Tian F, Lei Q, Bi J, et al. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients 2016;8:126.
  • 43. Jie Z, Bang-Yao L, Ming-Jie X, Hai-Wei L, Zu-Kang Z, Ting-Song W, et al. Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am J Clin Nutr 2000;72:1503–9.
  • 44. Hengst C, Ptok S, Roessler A, Fechner A, Jahreis G. Effects of polydextrose supplementation on different faecal parameters in healthy volunteers. Int J Food Sci Nutr 2009;60 Suppl 5:96–105.
  • 45. Li M, Li G, Shang Q, Chen X, Liu W, Pi X, et al. In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe 2016;39:19–25.
  • 46. Damiri H, Chaji M, Bojarpour M, Eslami M, Mamoei M. The effect of sodium betonites on economic value of broiler chickens diet. J Anim Vet Adv 2010;9:2668–70.
  • 47. Moghaddam HN, Jahanian R, Najafabadi HJ, Madaeni M. Influence of dietary zeolite supplementation on the performance and egg quality of laying hens fed varying levels of calcium and nonphytate phosphorus. J Biol Sci 2008;8:328–34.
  • 48. Prasai TP, Walsh KB, Bhattarai SP, Midmore DJ, Van TT, Moore RJ, et al. Biochar, Bentonite and Zeolite Supplemented Feeding of Layer Chickens Alters Intestinal Microbiota and Reduces Campylobacter Load. PLoS One 2016;11:e0154061.
  • 49. Yousaf MS, Goodarzi Boroojeni F, Vahjen W, Männer K, Hafeez A, Ur-Rehman H, et al. Encapsulated benzoic acid supplementation in broiler diets influences gut bacterial composition and activity. Br Poult Sci 2017;58:122–31.
APA Gültekin F, oner m, SAVAS H, DOGAN B (2020). Food additives and microbiota. , 192 - 200. 10.14744/nci.2019.92499
Chicago Gültekin Fatih,oner manolya eser,SAVAS Hasan Basri,DOGAN BORA Food additives and microbiota. (2020): 192 - 200. 10.14744/nci.2019.92499
MLA Gültekin Fatih,oner manolya eser,SAVAS Hasan Basri,DOGAN BORA Food additives and microbiota. , 2020, ss.192 - 200. 10.14744/nci.2019.92499
AMA Gültekin F,oner m,SAVAS H,DOGAN B Food additives and microbiota. . 2020; 192 - 200. 10.14744/nci.2019.92499
Vancouver Gültekin F,oner m,SAVAS H,DOGAN B Food additives and microbiota. . 2020; 192 - 200. 10.14744/nci.2019.92499
IEEE Gültekin F,oner m,SAVAS H,DOGAN B "Food additives and microbiota." , ss.192 - 200, 2020. 10.14744/nci.2019.92499
ISNAD Gültekin, Fatih vd. "Food additives and microbiota". (2020), 192-200. https://doi.org/10.14744/nci.2019.92499
APA Gültekin F, oner m, SAVAS H, DOGAN B (2020). Food additives and microbiota. İstanbul Kuzey Klinikleri, 7(2), 192 - 200. 10.14744/nci.2019.92499
Chicago Gültekin Fatih,oner manolya eser,SAVAS Hasan Basri,DOGAN BORA Food additives and microbiota. İstanbul Kuzey Klinikleri 7, no.2 (2020): 192 - 200. 10.14744/nci.2019.92499
MLA Gültekin Fatih,oner manolya eser,SAVAS Hasan Basri,DOGAN BORA Food additives and microbiota. İstanbul Kuzey Klinikleri, vol.7, no.2, 2020, ss.192 - 200. 10.14744/nci.2019.92499
AMA Gültekin F,oner m,SAVAS H,DOGAN B Food additives and microbiota. İstanbul Kuzey Klinikleri. 2020; 7(2): 192 - 200. 10.14744/nci.2019.92499
Vancouver Gültekin F,oner m,SAVAS H,DOGAN B Food additives and microbiota. İstanbul Kuzey Klinikleri. 2020; 7(2): 192 - 200. 10.14744/nci.2019.92499
IEEE Gültekin F,oner m,SAVAS H,DOGAN B "Food additives and microbiota." İstanbul Kuzey Klinikleri, 7, ss.192 - 200, 2020. 10.14744/nci.2019.92499
ISNAD Gültekin, Fatih vd. "Food additives and microbiota". İstanbul Kuzey Klinikleri 7/2 (2020), 192-200. https://doi.org/10.14744/nci.2019.92499