Yıl: 2019 Cilt: 16 Sayı: 3 Sayfa Aralığı: 282 - 291 Metin Dili: İngilizce DOI: 10.4274/tjps.galenos.2018.85619 İndeks Tarihi: 25-08-2020

An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid

Öz:
Objectives: Silver sulfide (Ag2S) quantum dots (QDs) are highly promising nanomaterials in bioimaging systems due to their high activities for bothimaging and drug/gene delivery. There is insufficient research on the toxicity of Ag2S QDs coated with meso-2,3-dimercaptosuccinic acid (DMSA).In this study, we aimed to determine the cytotoxicity of Ag2S QDs coated with DMSA in Chinese hamster lung fibroblast (V79) cells over a widerange of concentrations (5-2000 µg/mL).Materials and Methods: Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake(NRU) assays. The genotoxic and apoptotic effects of DMSA/Ag2S QDs were also assessed by comet assay and real-time polymerase chain reactiontechnique, respectively.Results: Cell viability was 54.0±4.8% and 65.7±4.1% at the highest dose (2000 µg/mL) of Ag2S QDs using the MTT and NRU assays, respectively.Although cell viability decreased above 400 µg/mL (MTT assay) and 800 µg/mL (NRU assay), DNA damage was not induced by DMSA/Ag2S QDsat the studied concentrations. The mRNA expression levels of p53, caspase-3, caspase-9, Bax, Bcl-2, and survivin genes were altered in the cellsexposed to 500 and 1000 µg/mL DMSA/Ag2S QDs.Conclusion: The cytotoxic effects of DMSA/Ag2S QDs may occur at high doses through the apoptotic pathways. However, DMSA/Ag2S QDs appearto be biocompatible at low doses, making them well suited for cell labeling applications.
Anahtar Kelime:

Mezo-2,3-dimerkaptosüksinik Asitle Kaplanmış Gümüş Sülfit Kuantum Noktalarının Sitotoksisitesi ve Genotoksisitesi Üzerine Bir In Vitro Çalışma

Öz:
Amaç: Gümüş sülfür (Ag2 S) kuantum noktaları (QD), hem görüntüleme hem de ilaç/gen hedefleme için büyük aktiviteleri nedeniyle biyo-görüntüleme sisteminde oldukça gelecek vaad eden nanomalzemelerdir. Mezo-2,3-dimerkaptosüksinik asit (DMSA) ile kaplanmış Ag2 S QD’lerin toksisitesi hakkında yeterli çalışma yoktur. Bu çalışmada Çin hamster akciğer fibroblast (V79) hücrelerinde DMSA ile kaplanmış Ag2 S QD’lerin geniş bir konsantrasyon aralığında (5-2000 µg/mL) sitotoksisitesini belirlemeyi amaçladık. Gereç ve Yöntemler: Hücre canlılığı 3-(4,5-dimetiltiyazol-2-il)-2,5-difeniltetrazolium bromid (MTT) ve nötral kırmız alım (NRU) deneyleri ile belirlendi. DMSA/Ag2 S QD’lerin genotoksik ve apoptotik etkileri sırasıyla komet analizi ve gerçek zamanlı polimeraz zincir reaksiyonu tekniği ile değerlendirildi. Bulgular: Ag2 S QD’lerin en yüksek dozlarında hücre canlılığı MTT ve NRU deneylerinde sırasıyla 54.0±4.8% ve 65.7±4.1% olarak bulundu. Ancak hücre canlılığı 400 µg/mL (MTT deneyi) ve 800 µg/mL (NRU deney) üzerinde azalmıştır. İncelenen konsantrasyonlarda DNA hasarının DMSA/Ag2 S QD’ler tarafından indüklenmediği belirlenmiştir. P53, kaspaz-3, kaspaz-9, Bax, Bcl-2 ve survivin genlerinin mRNA ekspresyon düzeyleri 500 ve 1000 µg/mL DMSA/Ag2 S QD’lere maruz kalan hücrelerde değişmiştir. Sonuç: DMSA/Ag2 S QD’lerin yüksek dozlarda sitotoksik etkilerinin apoptotik yollarla ortaya çıkabileceği görülmektedir. Bununla birlikte, DMSA/ Ag2 S QD’ler, düşük dozlarda biyolojik olarak uyumlu görünmektedir, bu da onları hücre görüntüleme uygulamaları için uygun kılmaktadır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater. 2008;7:248-254.
  • 2. Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol. 2009;4:627-633.
  • 3. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538-544.
  • 4. Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang X, Zhang G, Li X, Liu Z, Utz PJ, Jiang K, Fan S, Dai H. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotechnol. 2008;26:1285-1292.
  • 5. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83-90.
  • 6. He Y, Fan C, Lee ST. Silicon nanostructures for bioapplications. Nano Today. 2010;5:282-295.
  • 7. McAuliffe ME, Perry MJ. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology. 2007;1:204-210.
  • 8. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622-627.
  • 9. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823-839.
  • 10. Singh SK, Kulkarni PP, Dash D. Biomedical Applications of Nanomaterials: An Overview. Bio Nanotechnology: A Revolution in Food. Biomedical and Health Sciences. 2013:1-32.
  • 11. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13:40-46.
  • 12. Klimov VI. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu Rev Phys Chem. 2007;58:635-673.
  • 13. Murphy CJ, Coffer JL. Quantum dots: A primer. Appl Spectrosc. 2002;56:16-27.
  • 14. Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013- 2016.
  • 15. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016-2018.
  • 16. Medintz I. Universal tools for biomolecular attachment to surfaces. Nat Mater. 2006;5:842.
  • 17. Wagner MK, Li F, Li J, Li XF, Le XC. Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem. 2010;397:3213-3224.
  • 18. Mattoussi H, Palui G, Na HB. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev.2012;64:138-166.
  • 19. Frigerio C, Ribeiro DS, Rodrigues SS, Abreu VL, Barbosa JA, Prior JA, Marques KL, Santos JL. Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal Chim Acta. 2012;735:9-22.
  • 20. Frasco MF, Chaniotakis N. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem. 2010;396:229- 240.
  • 21. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21:41-46.
  • 22. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem. 2011;22:825-858.
  • 23. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem Biol. 2011;18:10-24.
  • 24. Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013;67:215-252.
  • 25. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933-937.
  • 26. Weller H. Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures. Curr Opin Colloid Interface Sci. 1998;3:194-199.
  • 27. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 1997;101:9463-9475.
  • 28. Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phy Chem. 1996;100:468- 471.
  • 29. Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165-172.
  • 30. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93-97.
  • 31. Chan WH, Shiao NH, Lu PZ. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Let. 2006;167:191-200.
  • 32. Chen N, He Y, Su Y, Li X, Huang Q, Wang H, Zhang X, Tai R, Fan C. The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012;33:1238-1244.
  • 33. Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM. Longterm exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir. 2007;23:1974-1980.
  • 34. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ. Cytotoxicity of colloidal CdSe and CdSe/ ZnS nanoparticles. Nano Lett. 2005;5:331-338.
  • 35. Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, Li J, Wang YQ. Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol In Vitro. 2009;23:1007- 1013.
  • 36. Male KB, Lachance B, Hrapovic S, Sunahara G, Luong JHT. Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem. 2008;80:5487-5493.
  • 37. Gao J, Chen X, Cheng Z. Near-infrared quantum dots as optical probes for tumor imaging. Curr Top Med Chem. 2010;10:1147-1157.
  • 38. Hocaoglu I, Demir F, Birer O, Kiraz A, Sevrin C, Grandfils C, Acar HY. Emission tunable, cyto/hemocompatible, near-IR-emitting Ag2S quantum dots by aqueous decomposition of DMSA. Nanoscale. 2014;6:11921-11931.
  • 39. Rao BS, Shanbhoge R, Rao BN, Adiga SK, Upadhya D, Aithal BK, Kumar MR. Preventive efficacy of hydroalcoholic extract of Cymbopogon citratus against radiation-induced DNA damage on V79 cells and free radical scavenging ability against radicals generated in vitro. Hum Exp Toxicol. 2009;28:195-202.
  • 40. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63.
  • 41. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119:203-210.
  • 42. Kuźma Ł, Wysokińska H, Rózalski M, Krajewska U, Kisiel W. An unusual taxodione derivative from hairy roots of Salvia austriaca. Fitoterapia. 2012;83:770-773.
  • 43. Di Virgilio AL, Iwami K, Wätjen W, Kahl R, Degen GH. Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol Lett. 2004;151:1511-1562.
  • 44. Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro. 2012;26:351-561.
  • 45. Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology. 2011;283:101-108.
  • 46. Winnik FM, Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res. 2013;46:672-680.
  • 47. Manshian BB, Soenen SJ, Brown A, Hondow N, Wills J, Jenkins GJ, Doak SH. Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries. Mutagenesis. 2016;31:97-106.
  • 48. Smith WE, Brownell J, White CC, Afsharinejad Z, Tsai J, Hu X, Polyak SJ, Gao X, Kavanagh TJ, Eaton DL. In vitro toxicity assessment of amphiphillic polymer-coated CdSe/ZnS quantum dots in two human liver cell models. ACS Nano. 2012;6:9475-9484.
  • 49. Smulders S, Luyts K, Brabants G, Golanski L, Martens J, Vanoirbeek J, Hoet PH. Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study. Toxicol Lett. 2015;232:333-339.
  • 50. Smulders S, Luyts K, Brabants G, Landuyt KV, Kirschhock C, Smolders E, Golanski L, Vanoirbeek J, Hoet PH. Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol Sci. 2014;141:132-140.
  • 51. Soenen SJ, Manshian BB, Himmelreich U, Demeester J, Braeckmans K, De Smedt SC. The performance of gradient alloy quantum dots in cell labeling. Biomaterials. 2014;35:7249-7258.
  • 52. Derfus AM, Chan WCW, Bhatia SN. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004;4:11-18.
  • 53. Choi O, Clevenger TE, Deng B, Surampalli RY, Ross Jr L, Hu Z. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res. 2009;43:1879-1886.
  • 54. Munari M, Sturve J, Frenzilli G, Sanders MB, Brunelli A, Marcomini A, Nigro M, Lyons BP. Genotoxic effects of CdS quantum dots and Ag2 S nanoparticles in fish cell lines (RTG-2). Mutat Res Genet Toxicol Environ Mutagen. 2014;776:89-93.
  • 55. Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q. Ag2 S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano. 2012;6:3695-3702.
  • 56. Akhtar MJ, Kumar S, Murthy RC, Ashquin M, Khan MI, Patil G, Ahmad I. The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid. Toxicol In Vitro. 2010;24:1139-1147.
  • 57. Barillet S, Jugan ML, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett. 2010;198:324-330.
  • 58. Mahmoudi M, Simchi A, Milani AS, Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2009;336:510-508.
  • 59. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009;185:211-218.
  • 60. Fotakis G, imbrell JA. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 2006;160:171-177.
  • 61. Chaung W, Mi LJ, Boorstein RJ. The p53 status of Chinese hamster V79 cells frequently used for studies on DNA damage and DNA repair. Nucleic Acids Res. 1997;25:992-994.
  • 62. Chen Z, Wang Y, Ba T, Li Y, Pu J, Chen T, Song Y, Gu Y, Qian Q, Yang J, Jia G. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett. 2014;226:314-319.
  • 63. Darne C, Terzetti F, Coulais C, Fontana C, Binet S, Gaté L, Guichard Y. Cytotoxicity and genotoxicity of panel of single- and multiwalled carbon nanotubes: in vitro effects on normal Syrian hamster embryo and immortalized v79 hamster lung cells. J Toxicol. 2014;2014:872195.
  • 64. Guichard Y, Fontana C, Chavinier E, Terzetti F, Gaté L, Binet S, Darne C. Cytotoxic and genotoxic evaluation of different synthetic amorphous silica nanomaterials in the V79 cell line. Toxicol Ind Health. 2016;32:1639- 1650.
  • 65. Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen. 2008;49:399-405.
  • 66. Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, Hubal EA. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ Health Perspect. 2011;119:1539-1546.
  • 67. Nogueira DR, Mitjans M, Infante MR, Vinardell MP. Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications. Int J Pharm. 2011;420:51-58.
  • 68. Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine (Lond). 2011;6:929-941.
  • 69. Maccormack TJ, Clark RJ, Dang MK, Ma G, Kelly JA, Veinot JG, Goss GG. Inhibition of enzyme activity by nanomaterials: Potential mechanisms and implications for nanotoxicity testing. Nanotoxicology. 2012;6:514- 525.
  • 70. Monteiro-Riviere NA, Oldenburg SJ, Inman AO. Interactions of aluminum nanoparticles with human epidermal keratinocytes. J Appl Toxicol. 2010;30:276-285.
  • 71. Díaz B, Sánchez-Espinel C, Arruebo M, Faro J, de Miguel E, Magadán S, Yagüe C, Fernández-Pacheco R, Ibarra MR, Santamaría J, GonzálezFernández A. Assessing Methods for Blood Cell Cytotoxic Responses to Inorganic Nanoparticles and Nanoparticle Aggregates. Small. 2008;4:2025-2034.
  • 72. Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? Environ Mol Mutagen. 2015;56:82-96.
  • 73. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROSmediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25:231-241.
  • 74. Dong B, Li C, Chen G, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q. Facile Synthesis of Highly Photoluminescent Ag2 Se Quantum Dots as a New Fluorescent Probe in the Second Near-Infrared Window for in vivo Imaging. Chem Mater. 2013;25:2503-2509.
  • 75. Gu Y-P, Cui R, Zhang Z-L, Xie Z-X, Pang D-W. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in vivo Imaging. J Am Chem Soc. 2012;134:79-82.
  • 76. Tang H, Yang ST, Yang YF, Ke DM, Liu JH, Chen X, Wang H, Liu Y. Blood Clearance, Distribution, Transformation, Excretion, and Toxicity of NearInfrared Quantum Dots Ag2Se in Mice. ACS Appl Mater Interfaces. 2016;8:17859-17869.
  • 77. Jebali A, Hekmatimoghaddam S, Kazemi B. The cytotoxicity of silver nanoparticles coated with different free fatty acids on the Balb/c macrophages: an in vitro study. Drug Chem Toxicol. 2014;37:433-439.
  • 78. Hocaoglu I, Çizmeciyan MN, Erdem R, Ozen C, Kurt A, Sennaroglu A, Acar HY. Development of highly luminescent and cytocompatible near-IRemitting aqueous Ag2S quantum dots. J Mater Chem. 2012;22:14674-14681.
  • 79. Gopinath P, Gogoi SK, Sanpui P, Paul A, Chattopadhyay A, Ghosh SS. Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B Biointerfaces. 2010;77:240-245.
  • 80. Sherr CJ. Principles of Tumor Suppression. Cell. 2004;116:235-46.
  • 81. Ryan BM, O’Donovan N, Duffy MJ. Survivin: A new target for anti-cancer therapy. Cancer Treat Rev. 2009;35:553-562.
  • 82. Chougule M, Patel AR, Sachdeva P, Jackson T, Singh M. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer. Lung Cancer. 2011;71:271-282.
  • 83. Gao C, Wang AY. Significance of Increased Apoptosis and Bax Expression in Human Small Intestinal Adenocarcinoma. J Histochem Cytochem. 2009;57:1139-1148.
  • 84. Timmer JC and Salvesen GS. Caspase substrates. Cell Death And Differentiation. Cell Death Differ. 2007;14:66-72
  • 85. Youle RJ and Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47-59
  • 86. Jänicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273:9357-9360.
  • 87. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99-104.
  • 88. Saquib Q, Al-Khedhairy AA, Ahmad J, Siddiqui MA, Dwivedi S, Khan ST, Musarrat. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol. 2013;273:289-297.
  • 89. Farnebo M, Bykov VJ, Wiman KG. The p53 tumor suppressor: A master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun. 2010;396:85-89.
  • 90. Blanc-Brude OP, Yu J, Simosa H, Conte MS, Sessa WC, Altieri DC. Inhibitor of apoptosis protein survivin regulates vascular injury. Nat Med. 2002;8:987-994
  • 91. Marusawa H, Matsuzawa S, Welsh K, Zou H, Armstrong R, Tamm I, Reed JC. HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J. 2003;22:2729-2740.
  • 92. Fuentes-Prior P, Salvesen Guy GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J. 2004;384:201-232.
APA VARDAR D, Aydin Dilsiz S, HOCAOĞLU İ, ACAR H, BAŞARAN N (2019). An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. , 282 - 291. 10.4274/tjps.galenos.2018.85619
Chicago VARDAR Deniz ÖZKAN,Aydin Dilsiz Sevtap,HOCAOĞLU İbrahim,ACAR Havva YAĞCI,BAŞARAN NURŞEN An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. (2019): 282 - 291. 10.4274/tjps.galenos.2018.85619
MLA VARDAR Deniz ÖZKAN,Aydin Dilsiz Sevtap,HOCAOĞLU İbrahim,ACAR Havva YAĞCI,BAŞARAN NURŞEN An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. , 2019, ss.282 - 291. 10.4274/tjps.galenos.2018.85619
AMA VARDAR D,Aydin Dilsiz S,HOCAOĞLU İ,ACAR H,BAŞARAN N An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. . 2019; 282 - 291. 10.4274/tjps.galenos.2018.85619
Vancouver VARDAR D,Aydin Dilsiz S,HOCAOĞLU İ,ACAR H,BAŞARAN N An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. . 2019; 282 - 291. 10.4274/tjps.galenos.2018.85619
IEEE VARDAR D,Aydin Dilsiz S,HOCAOĞLU İ,ACAR H,BAŞARAN N "An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid." , ss.282 - 291, 2019. 10.4274/tjps.galenos.2018.85619
ISNAD VARDAR, Deniz ÖZKAN vd. "An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid". (2019), 282-291. https://doi.org/10.4274/tjps.galenos.2018.85619
APA VARDAR D, Aydin Dilsiz S, HOCAOĞLU İ, ACAR H, BAŞARAN N (2019). An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turkish Journal of Pharmaceutical Sciences, 16(3), 282 - 291. 10.4274/tjps.galenos.2018.85619
Chicago VARDAR Deniz ÖZKAN,Aydin Dilsiz Sevtap,HOCAOĞLU İbrahim,ACAR Havva YAĞCI,BAŞARAN NURŞEN An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turkish Journal of Pharmaceutical Sciences 16, no.3 (2019): 282 - 291. 10.4274/tjps.galenos.2018.85619
MLA VARDAR Deniz ÖZKAN,Aydin Dilsiz Sevtap,HOCAOĞLU İbrahim,ACAR Havva YAĞCI,BAŞARAN NURŞEN An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turkish Journal of Pharmaceutical Sciences, vol.16, no.3, 2019, ss.282 - 291. 10.4274/tjps.galenos.2018.85619
AMA VARDAR D,Aydin Dilsiz S,HOCAOĞLU İ,ACAR H,BAŞARAN N An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turkish Journal of Pharmaceutical Sciences. 2019; 16(3): 282 - 291. 10.4274/tjps.galenos.2018.85619
Vancouver VARDAR D,Aydin Dilsiz S,HOCAOĞLU İ,ACAR H,BAŞARAN N An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turkish Journal of Pharmaceutical Sciences. 2019; 16(3): 282 - 291. 10.4274/tjps.galenos.2018.85619
IEEE VARDAR D,Aydin Dilsiz S,HOCAOĞLU İ,ACAR H,BAŞARAN N "An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid." Turkish Journal of Pharmaceutical Sciences, 16, ss.282 - 291, 2019. 10.4274/tjps.galenos.2018.85619
ISNAD VARDAR, Deniz ÖZKAN vd. "An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid". Turkish Journal of Pharmaceutical Sciences 16/3 (2019), 282-291. https://doi.org/10.4274/tjps.galenos.2018.85619