Yıl: 2020 Cilt: 17 Sayı: 3 Sayfa Aralığı: 299 - 306 Metin Dili: İngilizce DOI: 10.4274/tjps.galenos.2019.94103 İndeks Tarihi: 27-11-2020

In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii

Öz:
Objectives: The spread of infectious diseases and the increase in drug resistance among microbes has forced researchers to synthesize biologicallyactive nanoparticles. Ecofriendly procedures for the synthesis of nanoparticles are improving day by day in the field of nanobiotechnology. In thepresent study we used extract of the green alga Botryococcus braunii for the synthesis of palladium and platinum nanoparticles and evaluated theirantimicrobial and antioxidant activity.Materials and Methods: Green alga was collected from Udaisagar Lake, Udaipur (Rajasthan, India) and isolated by serial dilution method and grownon Chu-13 nutrient medium. The characterization of alga synthesized palladium and platinum nanoparticles was carried out using X-ray diffractionand scanning electron spectroscopy. The zone of inhibition was measured by agar well plate method and minimum inhibitory concentrationwas determined by agar dilution assay for antimicrobial activity. The antioxidant activity of the nanoparticles was also studied by 1,1-diphenyl-2-picrylhydrazyl method.Results: Stable palladium and platinum nanoparticles were successfully produced using green alga. The XRD pattern revealed the crystallinenature and scanning electron micrographs showed the morphology of biogenically synthesized metal nanoparticles. Fourier transform infraredmeasurements showed all functional groups having control over stabilization and reduction of the nanoparticles. The green synthesizednanoparticles exhibited antimicrobial activity against gram-positive and gram-negative bacterial strains, antifungal activity against a fungus, andantioxidant activity.Conclusion: The biogenic synthesis of metal nanoparticles can be a promising process for the production of other transition metal nanoparticlesand new nanocatalysts will revolutionize the synthesis of organic heterocycles.
Anahtar Kelime:

Botryococcus braunii Kullanarak Biyojenik Olarak Sentezlenmiş Paladyum ve Platin Nanopartiküllerin İn Vitro Antimikrobiyal ve Antioksidan Aktiviteleri

Öz:
Amaç: Bulaşıcı hastalıkların yayılması ve mikroplar arasında gözlenen ilaç direncindeki artış, araştırmacıları biyolojik olarak aktif nanopartikülleri sentezlemeye zorladı. Nanopartiküllerin sentezine yönelik çevre dostu prosedürler, nanobiyoteknoloji alanında her geçen gün gelişmektedir. Bu çalışmada palladyum ve platin nanopartiküllerin sentezi için yeşil bir alg olan Botryococcus braunii ekstraktını kullandık ve nanopartiküllerin antimikrobiyal ve antioksidan aktivitelerini değerlendirdik. Gereç ve Yöntemler: Udaisagar Gölü, Udaipur’dan (Rajasthan, Hindistan) yeşil alg toplandı ve seri seyreltme yöntemiyle izole edildi ve Chu-13 besi yerinde büyütüldü. Alg tarafından sentezlenmiş paladyum ve platin nanopartiküllerinin karakterizasyonu, X-ışını kırınımı ve taramalı elektron spektroskopisi kullanılarak gerçekleştirildi. İnhibisyon alanı, agar difüzyon tekniği kullanılarak ölçüldü ve minimum inhibitör konsantrasyonu, antimikrobiyal aktivite için agar seyreltme deneyi ile belirlendi. Nanopartiküllerin antioksidan aktivitesi de 1,1- difenil-2-picrylhydrazyl yöntemi ile belirlendi. Bulgular: Kararlı paladyum ve platin nanoparçacıklar yeşil alg kullanılarak başarılı bir şekilde üretildi. XRD paterni, kristalin yapıyı doğruladı ve taramalı elektron mikroskobu mikrografları, biyolojik olarak sentezlenen metal nanoparçacıkların morfolojisini gösterdi. fourier dönüşümükızılötesi sonuçları, nanopartiküllerin stabilizasyonu ve indirgenmesi üzerinde etkisi olan tüm fonksiyonel grupları göstermiştir. Yeşil sentezlenmiş nanopartiküller, Gram-pozitif ve Gram-negatif bakteriyel suşlara karşı antimikrobiyal aktivite, bir mantara karşı antifungal aktivite ve antioksidan aktivite gösterdi. Sonuç: Metal nanoparçacıkların biyojenik sentezi, diğer geçiş metali nanoparçacıklarının üretimi için umut verici bir süreç olabilir ve yeni nanokatalizörler organik heterosikliklerin sentezinde devrim yaratacaktır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004;126:8648-8649.
  • 2. Castro L, Blazquez ML, Munoz JA, Gonzalez F, Ballester A. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnology. 2013;7:109-116.
  • 3. Rai UN, Pal D, Saxena PN. Mineral nutrition of the green alga Botryococcus braunii. Kuetz New Botanist. 1987;14:1-7.
  • 4. Narayanan BK, Sakthivel N. Green synthesis of metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci. 2011;169:59-79.
  • 5. Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of Zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014;116:275-277.
  • 6. Akhtar MS, Panwa J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extract. ACS Sustainable Chem Eng 2013;1:591- 602.
  • 7. Elango G, Roopan SM. Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim Acta A Mol Biomal Spectrosc. 2015;139:367-373.
  • 8. Narayanan R, EI-Sayed MA. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticles shape dependence and stability. J Phy Chem B. 2005;109:12663-12676.
  • 9. Thakkar KN, Mhatre SS, Pankh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257-262.
  • 10. Nasrollahzadeh M, Sajadi SM, Maham M. Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki-Miyaura coupling in water. J Mol Catal A Chem. 2015;396: 297-303.
  • 11. Ramkumar VS, Pugrzhendhi, A, Prakash S, Ahila NK, Vinoj G, Selvam S, Kumar G, Kannapiran E, Rajendran BR. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity at PVP/PtNps nano-composite towards biological applications. Biomed Pharmacother. 2017;92:479-490.
  • 12. Siddiqi KS, Husen A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett. 2016;11:482.
  • 13. Sa′nchez-Moreno C, Larrauri JA, Saura-Calixto F. Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int. 1999;32:407-412.
  • 14. Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A, Huynh-Ba T, Lambelet P, McPhail D, Skibsted LH, Tijburg L. Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds. Eur Food Res Technol. 2001;212:319-328.
  • 15. Chu SP. The influence of the mineral composition of the medium on the growth of planktonic algae: Part I. Methods and Culture media. J Ecol. 1942;30:284-325.
  • 16. Ramakrishana M, Babu DR, Gengan RM, Chandra S, Rao GN. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostruct Chem. 2015;6:1-13.
  • 17. Arsiya F, Sayadi MS, Sobhani S. Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett. 2016;186:113-115.
  • 18. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6:71-79.
  • 19. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protoc. 2008;3:163-175.
  • 20. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200.
  • 21. Arya A, Gupta K, Chundawat TS, Vaya D. Biogenic Synthesis of Copper and Silver Nanoparticles using Green Alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem App. 2018:1-9.
  • 22. Rajathi FAA, Nambaru VRMS. Phytofabrication of nanocrystalline platinum particles by leaves of Cerbera manghas and its antibacterial efficacy. Int J Pharma Bio Sci. 2014;5:619-628.
  • 23. Kalaiselvi A, Roopan SM, Madhumitha G, Ramalingam C, Elango G. Synthesis and characterisation of Palladium nanoparticles using Catharanthusroseus leaf extract and its application in the photocatalytic degradation. Spectrochimica Acta Part A: Moleculer and Biomoleculer Spectroscopy. 2015;135:116-119.
  • 24. Aboelfetoh EF, EI-Shenody RA, Ghobara MM. Eco-friendly synthesis of silver nanoparticles using green alga (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess. 2017;189:349.
  • 25. Sharma B, Purkayastha DD, Hazra S, Gogoi L, Bhattacharjee CR, Ghosh NN, Rout J. Biosynthesis of gold nanoparticles using fresh water green alga Prasiola crispa. Mater Lett. 2013;116:94-97.
  • 26. Shende S, Gade A, Rai M. Large Scale synthesis and antibacterial activity of fungal derived silver nanoparticles. Environ Chem Lett. 2016;15:427-434.
  • 27. Elango G, Roopan SM, AI-Dhabi NA, Arasu MA, Damodharan KI, Elumalai K. Cocosnuciferacoir-mediated green synthesis of PdNPs and its investigation against larvae and agricultural pest. Artificial Cells Nanomed Biotechnol. 2017;45:1581-1587.
  • 28. Govender Y, Riddin TL, Gericke M, Whiteley CG. On the enzymatic formation of platinum nanoparticles. J Nanoparticle Res. 2010;12:261- 271.
  • 29. Coccia F, Tonucci L, Bosco D, Bressan M, Alessandro DN. One pot synthesis of lignin stabilized platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chemistry. 2012;14:1073-1078.
  • 30. Raut RW, Haroon ASM, Malghe YS, Nikam BT, Kashid SB. Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus linn. Adv Mater Lett. 2013;4:650-654.
  • 31. Nematollahzadeh A, Abdekhodaie MJ, Shojaei A. Submicron nanoporous polyacrylamide beads with tunable size for verapamli imprinting. J Appl Polym Sci. 2012;125:189-199.
  • 32. Azizi S, Shahri MM, Rahman HS, Rahim RA, Rasedee A, Mohamad R. Green synthesis Palladium nanoparticles mediated by white tea (Camellia sinesis) extract with antioxidants, antibacterial and antiproliferative activities towards the human leukaemia (MOLT-4) cell line. Int J Nanomed. 2017;12:8841-8853.
  • 33. Ganaie SU, Abbasi T, Abbasi SA. Biomimetic synthesis of platinum nanoparticles utilizing a terrestrial weed antigononleptopus. Particul Sci Technnol. 2018;36:681-688.
  • 34. Naveen BS, Padmesh TVN. Seaweed (Sargassum ilicifolium) assisted green synthesis of Palladium nanoparticles. Int J Sci Eng Res. 2014;5:229-231.
  • 35. Hazarika M, Borah D, Bora P, Silva AR, Das P. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLOS ONE. 2017;12:1-19.
  • 36. Obreja L, Daniela P, Neculai F, Viorel M. Platinum nanoparticles synthesis by sonoelectrochemical methods. Material Plastice. 2010;47:42-47.
  • 37. Letaba GM, Lang CI. Synthesis of bimetallic platinum nanoparticles for biosensors. Sensors (Basel). 2013;13:10358-10369.
  • 38. Magaldi S, Mata-Essayag S, Hartungde-Capriles C, Perez C, Colella MT, Olaizola C, Ontiveros Y. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8:39-45.
  • 39. Valgas C, DeSouza SM, Smânia EFA, Smania Jr A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38:369-380.
  • 40. Srinivasan S, Sarada DVL. Antifungal activity of phenyl derivative of pyranocoumarin from Psoralea corylifolia L. seeds by inhibition of acetylation activity of trichothecene 3-o-acetyltransferase (Tri101). J Biomed Biotechnol. 2012;2012:310850.
  • 41. Sarkar M, Reneer DV, Carlyon JA. Sialyl-Lewis x-Independent Infection of Human Myeloid Cells by Anaplasma phagocytophilum Strains HZ and HGE1. Infect Immun. 2007;75:5720-5725.
  • 42. Lee CJ, Chen LW, Chen LG, Chang TL, Huang CW, Huang MC, Wanga CC. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J Food Drug Anal. 2013;21:169-176.
APA ARYA A, GUPT K, CHUNDAWAT T (2020). In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. , 299 - 306. 10.4274/tjps.galenos.2019.94103
Chicago ARYA Anju,GUPT Khushbu,CHUNDAWAT Tejpal Singh In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. (2020): 299 - 306. 10.4274/tjps.galenos.2019.94103
MLA ARYA Anju,GUPT Khushbu,CHUNDAWAT Tejpal Singh In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. , 2020, ss.299 - 306. 10.4274/tjps.galenos.2019.94103
AMA ARYA A,GUPT K,CHUNDAWAT T In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. . 2020; 299 - 306. 10.4274/tjps.galenos.2019.94103
Vancouver ARYA A,GUPT K,CHUNDAWAT T In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. . 2020; 299 - 306. 10.4274/tjps.galenos.2019.94103
IEEE ARYA A,GUPT K,CHUNDAWAT T "In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii." , ss.299 - 306, 2020. 10.4274/tjps.galenos.2019.94103
ISNAD ARYA, Anju vd. "In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii". (2020), 299-306. https://doi.org/10.4274/tjps.galenos.2019.94103
APA ARYA A, GUPT K, CHUNDAWAT T (2020). In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. Turkish Journal of Pharmaceutical Sciences, 17(3), 299 - 306. 10.4274/tjps.galenos.2019.94103
Chicago ARYA Anju,GUPT Khushbu,CHUNDAWAT Tejpal Singh In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. Turkish Journal of Pharmaceutical Sciences 17, no.3 (2020): 299 - 306. 10.4274/tjps.galenos.2019.94103
MLA ARYA Anju,GUPT Khushbu,CHUNDAWAT Tejpal Singh In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. Turkish Journal of Pharmaceutical Sciences, vol.17, no.3, 2020, ss.299 - 306. 10.4274/tjps.galenos.2019.94103
AMA ARYA A,GUPT K,CHUNDAWAT T In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. Turkish Journal of Pharmaceutical Sciences. 2020; 17(3): 299 - 306. 10.4274/tjps.galenos.2019.94103
Vancouver ARYA A,GUPT K,CHUNDAWAT T In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii. Turkish Journal of Pharmaceutical Sciences. 2020; 17(3): 299 - 306. 10.4274/tjps.galenos.2019.94103
IEEE ARYA A,GUPT K,CHUNDAWAT T "In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii." Turkish Journal of Pharmaceutical Sciences, 17, ss.299 - 306, 2020. 10.4274/tjps.galenos.2019.94103
ISNAD ARYA, Anju vd. "In Vitro Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using Botryococcus braunii". Turkish Journal of Pharmaceutical Sciences 17/3 (2020), 299-306. https://doi.org/10.4274/tjps.galenos.2019.94103