Yıl: 2020 Cilt: 44 Sayı: 3 Sayfa Aralığı: 239 - 246 Metin Dili: İngilizce DOI: 10.3906/fiz-2004-20 İndeks Tarihi: 31-08-2020

On-chip quantum optics and integrated optomechanics

Öz:
Recent developments in quantum computing and the growing interest in optomechanics and quantum opticsneed platforms that enable rapid prototyping and scalability. This can be fulfilled by on-chip integration, as we presenthere. The different nanofabrication steps are explained, and our automated measurement setup is discussed. We presentan opto-electromechanical device, the H-resonator, which enables optomechanical experiments such as electrostaticsprings and nonlinearities and thermomechanical squeezing. Moreover, it also functions as an optomechanical phaseshifter, an essential element for our integrated quantum optics efforts. Besides this, the equivalent of a beam splitter inphotonics-the directional coupler-is shown. Its coupling ratio can be reliably controlled, as we show with experimentaldata. Several directional couplers combined can realize the CNOT operation with almost ideal fidelity.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge University Press, Cambridge, 2010.
  • [2] Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, et al. Quantum supremacy using a programmable superconducting processor. Nature 2019; 574 (7779): 505–510. doi: 10.1038/s41586-019-1666-5
  • [3] Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys 2007; 79: 135–174. doi: 10.1103/RevModPhys.79.135
  • [4] Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature 2001; 409 (6816): 46–52.
  • [5] O’Brien JL, Furusawa A, Vuckovic J. Photonic quantum technologies. Nature Photonics 2009; 3 (12): 687–695.
  • [6] Poot M, Schuck C, Ma Xs, Guo X, Tang HX. Design and characterization of integrated components for SiN photonic quantum circuits. Opt Express 2016; 24 (7): 6843–6860. doi: 10.1364/OE.24.006843
  • [7] Poot M, Tang HX. Characterization of optical quantum circuits using resonant phase shifts. Appl Phys Lett 2016; 109 (13): 131106. doi: 10.1063/1.4962902
  • [8] Poot M, Tang HX. Broadband nanoelectromechanical phase shifting of light on a chip. Appl Phys Lett 2014; 104 (6): 061101. doi: 10.1063/1.4864257
  • [9] Taillaert D, Bogaerts W, Bienstman P, Krauss T, Van Daele P, et al. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. Quantum Electronics, IEEE Journal of 2002; 38 (7): 949–955. doi: 10.1109/JQE.2002.1017613
  • [10] Fong KY, Pernice WHP, Li M, Tang HX. High Q optomechanical resonators in silicon nitride nanophotonic circuits. Appl Phys Lett 2010; 97 (7): 073112. doi: 10.1063/1.3480411
  • [11] Poot M, van der Zant HSJ. Mechanical systems in the quantum regime. Phys Rep 2012; 511 (5): 273–335. doi: 10.1016/j.physrep.2011.12.004
  • [12] Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev Mod Phys 2014; 86: 1391–1452. doi: 10.1103/RevModPhys.86.1391
  • [13] Kippenberg TJ, Vahala KJ. Cavity optomechanics: back-action at the mesoscale. science 2008; 321 (5893): 1172– 1176. doi: 10.1126/science.1156032
  • [14] Sun X, Zheng J, Poot M, Wong CW, Tang HX. Femtogram Doubly Clamped Nanomechanical Resonators Embedded in a High-Q Two-Dimensional Photonic Crystal Nanocavity. Nano Letters 2012; 12 (5): 2299–2305. doi: 10.1021/nl300142t
  • [15] Rieger J, Faust T, Seitner MJ, Kotthaus JP, Weig EM. Frequency and Q factor control of nanomechanical resonators. Appl Phys Lett 2012; 101 (10): 103110. doi: 10.1063/1.4751351
  • [16] Rugar D, Grütter P. Mechanical parametric amplification and thermomechanical noise squeezing. Phys Rev Lett 1991; 67 (6): 699–702. doi: 10.1103/PhysRevLett.67.699
  • [17] Poot M, Fong KY, Tang HX. Deep feedback-stabilized parametric squeezing in an opto-electromechanical system. New J Phys 2015; 17 (4): 043056. doi: 10.1088/1367-2630/17/4/043056
  • [18] Vinante A, Falferi P. Feedback-Enhanced Parametric Squeezing of Mechanical Motion. Phys Rev Lett 2013; 111: 207203. doi: 10.1103/PhysRevLett.111.207203
  • [19] Poot M, Fong KY, Tang HX. Classical non-Gaussian state preparation through squeezing in an optoelectromechanical resonator. Phys Rev A 2014; 90: 063809. doi: 10.1103/PhysRevA.90.063809
  • [20] Ralph TC, Langford NK, Bell TB, White AG. Linear optical controlled-NOT gate in the coincidence basis. PhysRev A 2002; 65: 062324. doi: 10.1103/PhysRevA.65.062324
  • [21] Zhang Y, Yang S, Lim AEJ, Lo GQ, Galland C, et al. A compact and low loss Y-junction for submicron siliconwaveguide. Opt Express 2013; 21 (1): 1310–1316. doi: 10.1364/OE.21.001310
  • [22] Huang WP. Coupled-mode theory for optical waveguides: an overview. J Opt Soc Am A 1994; 11 (3): 963–983. doi: 10.1364/JOSAA.11.000963
  • [23] Rahimi-Keshari S, Broome MA, Fickler R, Fedrizzi A, Ralph TC, et al. Direct characterization of linearopticalnetworks. Opt Express 2013; 21 (11): 13450–13458. doi: 10.1364/OE.21.013450
  • [24] O’Brien JL, Pryde GJ, Gilchrist A, James DFV, Langford NK, et al. Quantum Process Tomography of a ControlledNOT Gate. Phys Rev Lett 2004; 93: 080502. doi: 10.1103/PhysRevLett.93.080502
  • [25] Guo X, Zou Cl, Schuck C, Jung H, Cheng R, et al. Parametric down-conversion photon-pair source on a nanophotonicchip. Light: Science & Applications 2017; 6 (5): e16249–e16249. doi: 10.1038/lsa.2016.249
  • [26] Grosso G, Moon H, Lienhard B, Ali S, Efetov DK, et al. Tunable and high-purity room temperature singlephotonemission from atomic defects in hexagonal boron nitride. Nat Commun 2017; 8 (1): 1–8. doi: 10.1038/s41467- 017-00810-2
  • [27] Pernice W, Schuck C, Minaeva O, Li M, Goltsman G, et al. High-speed and high-efficiency travelling wave singlephoton detectors embedded in nanophotonic circuits. Nat Commun 2012; 3: 1325. doi: 10.1038/ncomms2307
  • [28] Marsili F, Verma VB, Stern JA, Harrington S, Lita AE, et al. Detecting single infrared photons with 93% system efficiency. Nature Photonics 2013; 7 (3): 210. doi: 10.1038/nphoton.2013.13
APA Hoch D, Sommer T, Müller S, Poot M (2020). On-chip quantum optics and integrated optomechanics. , 239 - 246. 10.3906/fiz-2004-20
Chicago Hoch David,Sommer Timo,Müller Sebastian,Poot Menno On-chip quantum optics and integrated optomechanics. (2020): 239 - 246. 10.3906/fiz-2004-20
MLA Hoch David,Sommer Timo,Müller Sebastian,Poot Menno On-chip quantum optics and integrated optomechanics. , 2020, ss.239 - 246. 10.3906/fiz-2004-20
AMA Hoch D,Sommer T,Müller S,Poot M On-chip quantum optics and integrated optomechanics. . 2020; 239 - 246. 10.3906/fiz-2004-20
Vancouver Hoch D,Sommer T,Müller S,Poot M On-chip quantum optics and integrated optomechanics. . 2020; 239 - 246. 10.3906/fiz-2004-20
IEEE Hoch D,Sommer T,Müller S,Poot M "On-chip quantum optics and integrated optomechanics." , ss.239 - 246, 2020. 10.3906/fiz-2004-20
ISNAD Hoch, David vd. "On-chip quantum optics and integrated optomechanics". (2020), 239-246. https://doi.org/10.3906/fiz-2004-20
APA Hoch D, Sommer T, Müller S, Poot M (2020). On-chip quantum optics and integrated optomechanics. Turkish Journal of Physics, 44(3), 239 - 246. 10.3906/fiz-2004-20
Chicago Hoch David,Sommer Timo,Müller Sebastian,Poot Menno On-chip quantum optics and integrated optomechanics. Turkish Journal of Physics 44, no.3 (2020): 239 - 246. 10.3906/fiz-2004-20
MLA Hoch David,Sommer Timo,Müller Sebastian,Poot Menno On-chip quantum optics and integrated optomechanics. Turkish Journal of Physics, vol.44, no.3, 2020, ss.239 - 246. 10.3906/fiz-2004-20
AMA Hoch D,Sommer T,Müller S,Poot M On-chip quantum optics and integrated optomechanics. Turkish Journal of Physics. 2020; 44(3): 239 - 246. 10.3906/fiz-2004-20
Vancouver Hoch D,Sommer T,Müller S,Poot M On-chip quantum optics and integrated optomechanics. Turkish Journal of Physics. 2020; 44(3): 239 - 246. 10.3906/fiz-2004-20
IEEE Hoch D,Sommer T,Müller S,Poot M "On-chip quantum optics and integrated optomechanics." Turkish Journal of Physics, 44, ss.239 - 246, 2020. 10.3906/fiz-2004-20
ISNAD Hoch, David vd. "On-chip quantum optics and integrated optomechanics". Turkish Journal of Physics 44/3 (2020), 239-246. https://doi.org/10.3906/fiz-2004-20