Yıl: 2019 Cilt: 7 Sayı: 12 Sayfa Aralığı: 2170 - 2183 Metin Dili: Türkçe DOI: 10.24925/turjaf.v7i12.2170-2183.2944 İndeks Tarihi: 04-09-2020

Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler

Öz:
Lipofilik bir bileşen olan karotenoidler, konjuge çift bağ içeren antioksidan özelliğe sahip organik birpigmenttir. Karotenoidler üzerine yapılan çalışmalar son zamanlarda insan sağlığı üzerine yararlıetkilerine göre fonksiyonel gıdalar, farmakoloji ve biyoyararlılık üzerine yoğunlaşmıştır. Gıdalarınişlenmesi ve depolanması sırasında oksijen, ısı, nem ve ışık gibi diğer çevresel koşulların etkisiyle veyagastrointestinal sistemde karotenoid bileşenlerin biyolojik aktivitelerinde azalma meydana gelmektedir.Lipofilik olduğundan sulu sistemlerde karotenoidlerin uygulanabilirliği sınırlıdır. Bu sebeple, buproblemlerin üstesinden gelmek için mikroenkapsülasyon etkin bir yoldur. Püskürterek kurutma,dondurarak kurutma, ekstrüzyon, koaservasyon, emülsifikasyon gibi birçok mikroenkapsülasyontekniği geliştirilmiştir. Enkapsülasyonda, seçilen yöntemle birlikte kaplama materyali de önem arzetmektedir. Son dönemlerde çok katmanlı emülsifikasyon yöntemi, karotenoid yüklü mikrokapsüllerindayanımını, sulu sistemlerde kullanılabilirliğini ve biyoyararlılığını artırdığı için dikkat çekmektedir.Geliştirilen mikroenkapsülasyon teknikleri veya mikroenkapsülasyon tekniklerinin birlikte kullanımıenkapsülasyon etkinliği ve verimliliğini artırdığı yapılan çalışmalarda ifade edilmektedir. Buderlemede, hassas bir bileşen olan karotenoidlerin dayanımını ve biyoyararlılığını artırmak içinkullanılan mikroenkapsülasyon teknikleri ve konu hakkında son araştırmalar, gelişmeler ve trendlerinortaya konulması amaçlanmıştır.
Anahtar Kelime:

Microencapsulation of Carotenoid Components and Recent Developments in Used Methods

Öz:
Carotenoids which are a lipophilic component are an organic pigment with antioxidant properties that contain conjugated double bonds. Research on carotenoids have recently concentrated on functional foods, bioavailability and pharmacology due to their potential health benefits to humans. Carotenoid components are occurred a reduction of the biological activity by effect of undesired environmental conditions such as oxygen, heat, light, humidity during food processing and storage or gastrointestinal tract. Applicability in aqueous systems of carotenoids is limited because of lipophilic. Therefore, microencapsulation is an effective way to overcome these problems. Various microencapsulation technique such as spray drying, freeze drying, extrusion, conservation and emulsification has been developed. Besides selected microencapsulation method, coating material is also important in the encapsulation. Recently, multi-layers emulsification method is attracted interest in improving stability, availability in aqueous system and bioavailability of carotenoid load microcapsules. İt is stated in studies that developed microencapsulation techniques or using combine microencapsulation techniques increase encapsulation efficiency and yield. In the present paper, it is aimed to present using microencapsulation techniques in order to enhance stability and bioavailability of carotenoids which are a sensitive component, and current research, developments and trends about the subject.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abang S, Chan ES, Poncelet D. 2012. Effects of process variables on the encapsulation of oil in Ca-alginate capsules using an inverse gelation technique. Journal of Microencapsulation. 29(5): 417–428.
  • Agnihotri N. Mishra R, Goda C, Arora M. 2012. Microencapsulation – A Novel Approach in Drug Delivery: A Review. Indo Global Journal of Pharmaceutical Sciences. 2(1): 1-20.
  • Ahmed K, Li Y, McClements DJ, Xiao H. 2012. Nanoemulsion and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry. 132: 799–807.
  • Aider M. 2010. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology. 43(6): 837–842.
  • Anderson PO, Steinberg OG, Leirsund CKL. 2005. Polysaccharide capsules and methods of preparation. U.S. Patent 2005/0106233 A.
  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, SimalGa´ndara J. 2009. A review on the use of cyclodextrins in foods. Food Hydrocolloids. 23: 1631–1640.
  • Augustin MA, Sanguansri L, Margetts C, Young B. 2001. Microencapsulation of Food İngredients. Food Australia. 53(6): 220-223.
  • Barbosa MIMJ, Borsarelli CD, Mercadante AZ. 2005. Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International. 38(8–9): 989–994.
  • Blanch GP, Ruiz del Castillo ML, del Mar Caja M, Pérez-Méndez M, Sánchez-Cortés S. 2007. Stabilization of all-translycopene from tomato by encapsulation using cyclodextrins. Food Chemistry. 105(4): 1335–1341.
  • Bortnowska G. 2015. Multilayer Oil-in-Water Emulsions: Formation, Characteristics and Application as the Carriers for Lipophilic Bioactive Food Components–a Review. Polish Journal of Food and Nutrition Sciences. 65(3):157–166.
  • Buggenhouta SV, Almingerb M, Lemmensa L, Collea I, Knockaerta G, Moelantsa K, Loeya AV, Hendrickx M. 2010. In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science & Technology. 21: 607-618.
  • Burgain J, Gaiani C, Linder M, Scher J. 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering. 104 (4): 467–483.
  • Burin V, Rossa PN, Ferreira-Lima NE, Hillmann MCR, Boirdignon-Luiz MT. 2011. Anthocyanins: optimisation of extraction from cabernet sauvignon grapes, microcapsulation and stability in soft drink. International Journal of Food Science and Technology. 46: 186-193.
  • Calvo TRA, Santagapita PR. 2017. Encapsulation of a freesolvent extract of lycopene in alginate-Ca(II) beads containing sugars and biopolymers. Chem. Biol. Technol. Agric. 4:16.
  • Chan E. 2011. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polymers. 84: 1267–1275
  • Celli GB, Ghanem A, Su-Ling Brooks M. 2015. Bioactive Encapsulated Powders for Functional Foods-a Review of Methods and Current Limitations. Food Bioprocess Technology. 8:1825–1837.
  • Celli GB, Teixeira AG, Duke TG, Su-Ling Brooks M. 2016. Encapsulation of lycopene from watermelon in calciumalginate microparticles using an optimised inverse-gelation method by response surface methodology. Int. J. Food Sci. Technol. 51: 1523–1529.
  • Champagne CP, Fustier P. 2007. Microencapsulation for the improveddelivery of bioactive compounds into foods. Current Opinion in Biotechnology. 18: 184–190.
  • Chen MJ, Chen KN. 2007. Applications of probiotic encapsulation in dairy products. Encapsulation and Controlled Release Technologies in Food Systems, In: Lakkis, Jamileh M. (Ed.), Wiley- Blackwell, USA, 83–107p.
  • Chiu YT, Chiu CP, Chien JT, Ho GH, Yang J, Chen BH. 2007. Encapsulation of Lycopene Extract from Tomato Pulp Waste with Gelatin and Poly(α-glutamic acid) as Carrier. J. Agric. Food Chem. 55: 5123-5130.
  • Chuah AM, Kuroiwa T, Kobayashi I, Nakajima M. 2009. Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocolloid. 23: 600– 610.
  • Coronel-Aguilera CP, San Martín-Gonzalez MF. 2015. Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT - Food Science and Technology. 62: 187-193.
  • Cornacchia L, Roos YH. 2011. State of dispersed lipid carrier and interface composition as determinants of beta-carotene stability in oil-in-water emulsions. J. Food Sci. 76:1211– 1218.
  • Davidov-Pardo G, Gumus CE, McClements DJ. 2016. Luteinenriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chemistry. 196: 821–827.
  • de Oliveira VE, Almeida EWC, Castro HV, Edwards HGM, Dos Santos HF, de Oliveira LFC. 2011. Carotenoids and βCyclodextrin Inclusion Complexes: Raman Spectroscopy and Theoretical Investigation. J. Phys. Chem. A. 115: 8511–8519.
  • de Souza Simões L, Madalena DA, Pinheiro AC, Teixeira JA, Vicente AA, Ramos OL. 2017. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science. 243: 23–45.
  • de Vos P, Faas MM, Spasojevic M, Sikkema J. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal. 20 (4): 292–302.
  • Desai KGH, Jin Park H. 2005. Recent Developments in Microencapsulation of Food Ingredients. Drying Technology. 23: 1361–1394.
  • Dickinson E. 2009. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids. 23: 1473–1482.
  • Dickinson E. 2011. Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids. 25: 1966–1983.
  • Drosou CG, Krokida MK, Biliaderis CG. 2017. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology. 35(2): 139–162.
  • Donhowe EG, Flores FP, Kerr WL, Wicker L, Kong F. 2014. Characterization and in vitro bioavailability of β-carotene: Effects of microencapsulation method and food matrix. LWT - Food Science and Technology. 57: 42-48.
  • Elizalde BE, Herrera ML, Buera MP. 2002. Retention of βcarotene encapsulated in a trehalose-based matrix as affected by water content and sugar crystallization. J Food Eng. 67: 3039-3045.
  • Fang Z, Bhandari B. 2010. Encapsulation of polyphenols-A review. Trends in Food Science and Technology. 21(10): 510–523.
  • Fredrick E, Walstra P, Dewettinck K. 2010. Factors governing partial coalescence in oil-in-water emulsions. Advances in Colloid and Interface Science. 153(1–2): 30–42.
  • George M. Abraham TE. 2006. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review. Journal of Controlled Release. 114(1): 1–14.
  • Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. 2007. Application of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40: 1107– 1121.
  • Gouin S. 2004. Microencapsulation: industrial appraisal of existing Technologies and Trends. Trends in Food Science and Technology. 15 (7–8): 330–347.
  • Gonnet M, Lethuaut L, Boury F. 2010. New trends in encapsulation of liposoluble vitamins. J Contr Release. 146: 276-290.
  • Goula AM, Adamopoulos KG. 2012. A New Technique for Spray-Dried Encapsulation of Lycopene. Drying Technology. 30(6): 641–652.
  • Gomez-Estaca J, Comunian TA, Montero P, Ferro-Furtado R, Favaro-Trindade CS. 2016. Encapsulation of an astaxanthincontaining lipid extract from shrimp waste by complex coacervation using a novel gelatinecashew gum complex. Food Hydrocolloids. 61: 155-162.
  • Guo H, Huang Y, Qian J, Gong Q, Tang Y. 2014. Optimization of technological parameters for preparation of lycopene microcapsules. J Food Sci Technol. 51(7): 1318–1325.
  • HadjSadok A, Pitkowski A, Nicolai T, Benyahia L, MoulaiMostefa N. 2008. Characterisation of sodium caseinate as a function of ionic strength, pH and temperature using static and dynamic light scattering. Food Hydrocolloids. 22(8): 1460-1466.
  • Harnkarnsujarit N, Charoenrein S, Roos YH. 2012. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids. J Food Sci. 77: 313-320.
  • Jafari SM, Assadpoor E, He Y, Bhandari B. 2008. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Dry. Technol. 26: 816–835.
  • Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. 2016. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules. 87: 101– 113.
  • Jiménez-Colmenero F. 2013. Potential applications of multiple emulsions in the development of healthy and functional foods. Food Research International. 52(1): 64–74.
  • Kailasapathy K. 2002. Microencapsulation of probiotic bacteria: technology and potential applications. Current Issues in Intestinal Microbiology. 3: 39–48.
  • Kett VI, Fitzpatrick S, Cooper B, Craig DQ. 2003. An investigation into the subambient behaviour of aqueous mannitol solutions using differential scanning calorimetry, cold stage microscopy and X-ray diffractometry. J. Pharm. Sci. 92: 1919–1929.
  • Kha TC, Nguyen MH, Roach PD. 2010. Effects of spray drying conditions on the physicochemical and antioxidant properties of the gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering. 98: 385-392.
  • Kim AI, Akers MJ, Nail SL. 1998. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate and a noncrystallizing cosolute. J. Pharm. Sci. 87: 931–935.
  • Kim S, Cho E, Yoo J, Cho E, Choi S, Son S, Lee J, In M-J, Kim DC, Jin-Hyun KJH, Chae HJ, 2010. CD-mediated encapsulation enhanced stability and solubility of Astaxanthin. J. Appl. Biol. Chem. 53: 559–565.
  • Koç M, Sakin M, Kaymak-Ertekin F. 2010. Mikroenkapsülasyon ve Gıda Teknolojisinde Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 16(1): 77-86.
  • Kurkov SV, Loftsson T. 2013. Cyclodextrins. Int. J. Pharm. 453: 167–180.
  • Lamba H, Sathish K, Sabikhi L. 2015. Double Emulsions: Emerging Delivery System for Plant Bioactives. Food Bioprocess Technology. 8: 709–728.
  • Lim ASL, Griffin C, Roos, YH. 2014. Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Research International. 62: 403–409.
  • Loksuwan J. 2007. Characteristics of microencapsulated βcarotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloid. 21: 928-935.
  • Lourenço SC, Torres CAV, Daniela N, Duartec P, Freitas F, Reis MAM, Fortunatoc E, Moldão-Martin M, da Costaa LB, Alves VD. 2017. Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules. 104: 1099–1106.
  • Madene A, Jacquot M, Scher J, Desobry S. 2006. Flavour encapsulation and controlled release–a review. Int. J. Food Sci. Tech. 41: 1–21.
  • Maldonado L, Sadeghi R, Kokini J. 2017. Nanoparticulation of bovine serum albumin and poly-d-lysine through complex coacervation and encapsulation of curcumin. Colloids and Surfaces B: Biointerfaces. 159: 759–769.
  • Matalanis A, Jones OG. 2011. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids. 25: 1865-1880.
  • McClements, D.J., Decker, E.A., Weiss, J., 2007. Emulsionbased delivery systems for lipophilic bioactive components. Journal of Food Science. 72(8): 109–124.
  • McClements DJ. 2012. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr. Opin. Colloid Interface Sci. 17: 235–245.
  • McClements DJ. 2017. Emulsion-based Delivery Systems: Novel or Improved Performance through Emulsion Technology. URL: people.umass.edu/.../FoodEmulsions2008/.../(10)Speciality. (Erişim tarihi: 08.06.2017).
  • Meléndez-Martínez AJ, Ayal AF, Echávarri JF, Negueruela AI, Escudero-Gilete ML, González-Miret ML, Vicario IM, Heredia FJ. 2011. A novel and enhanced approach for the assessment of the total carotenoid content of foods based on multipoint spectroscopic measurements. Food Chemistry. 126: 1862–1869.
  • Mofidi N, Aghai-Moghadam M, Sarbolouki MN. 2000. Mass preparation and characterization of alginate microspheres. Process Biochemistry. 35: 885–888.
  • Murugesan R, Orsat V. 2012. Spray Drying for the Production of Nutraceutical Ingredients-A Review. Food and Bioprocess Technology. 5(1): 3–14.
  • Muschiolik, G., 2007. Multiple emulsions for food use. Current Opinion in Colloid & Interface Science. 12: 213–220.
  • Nisar N. Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid Metabolism in Plants. Molecular Plant. 8: 68–82.
  • Nunes IL, Mercadante AZ. 2007. Encapsulation of lycopene using spray-drying and molecular inclusion processes. Br Arch Biol Technol. 50: 893-900.
  • Oliver J, Palou A. 2000. Chromatographic determination of carotenoids in foods. Journal of Chromatography A. 881: 543–555.
  • Onwulata CI. 2012. Encapsulation of New Active Ingredients. Annu. Rev. Food Sci. Technol. 3: 183–202.
  • Prashanth KVH. Tharanathan RN. 2007. Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science & Technology. 18(3): 117–131.
  • Pérez-Masiá R, Lagaron JM, Lopez-Rubio A. 2015. Morphology and Stability of Edible Lycopene-Containing Micro and Nanocapsules Produced Through Electrospraying and Spray Drying. Food and Bioprocess Technology. 8: 459–470.
  • Pinho E, Grootveld M, Soares G, Henriques M. 2014. Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers. 101: 121-135.
  • Polyakov NE, Leshina TV, Konovalova TA, Hand EO, Kispert LD. 2004. Inclusion complexes of carotenoids wıth cyclodextrins: 1H NMR, EPR, and optical studies. Free Radical Biology & Medicine. 36(7): 872-880.
  • Pu J, Bankston JD, Sathivel S. 2011. Production of microencapsulated crawfish (Procambarus clarkii) astaxanthin in oil by spray drying technology. Drying Technology. 29: 1150-1160.
  • Quek SY, Chok NK, Swedlund P. 2007. The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing. 46: 386–392.
  • Qv XY, Zeng ZP, Jiang JG. 2011. Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocolloid. 25: 1596-1603.
  • Rajabia H, Jafari SM, Rajabzadehb G, Sarfarazia M, Sedaghatia S. 2019. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids and Surfaces A. 578:123644.
  • Ranveer RC, Gatade AA, Kamble HA, Sahoo AK. 2015. Microencapsulation and storage stability of lycopene extracted from tomato processing waste. Brazilian Archives of Biology and Technology. 58(6): 953–960.
  • Ray S, Raychaudhuri U, Chakraborty R. 2016. An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience. 13: 76–83.
  • Reineccius GA, 2004. The spray drying of food favors. Drying Technology. 22: 1289–1324.
  • Righetto AM, Netto FM. 2005. Effect of encapsulating materials on water sorption, glass transition and stability of juice from immature acerola. International Journal of Food Properties. 8: 337-346.
  • Rocha GA, Fávaro-Trindade CS, Grosso CRF. 2012. Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food and Bioproducts Processing. 90(1): 37–42.
  • Rocha-Selmi GA, Favaro-Trindade CS, Grosso CRF. 2013. Morphology, stability, and application of lycopene microcapsules produced by complex coacervation. Hindawi Publishing Corporation Journal of Chemistry. 2013: 7.
  • Rodriguez-Amaya DB. 2001. A guide to carotenoid analysis in foods. http://pdf.usaid.gov/pdf_docs/Pnacq929.pdf. (Erişim tarihi: 07.06.2017).
  • Rodriguez-Amaya DB, Kimura M. 2004. Harvestplus Handbook for Carotenoid Analysis. International Food Policy Research Institute and International Center For Tropical Agriculture, Washington, DC and Cali.
  • Rodriguez-Huezo ME, Pedroza-Islas R, Prado-Barragan LA, Beristain CI, Vernon-Carter EJ. 2004. Microencapsulation by spray drying of multiple emulsions containing carotenoids. J. Food Sci. 69: 351–359.
  • Sagalowicz L, Leser ME. 2010. Delivery systems for liquid food products. Current Opinion in Colloid and Interface Science. 15(1–2): 61–72.
  • Santos DT, Meireles MA. 2010. Carotenoid Pigments Encapsulation: Fundamentals, Techniques and Recent Trends. The Open Chemical Engineering Journal. 4(2): 42–50.
  • Shaw LA, McClements DJ, Decker EA. 2007. Spray-dried multilayered emulsions as a delivery method for omega 3 fatty acids into food systems. J Agric Food Chemistry. 55: 3112–3119.
  • Shi J, Xue SJ, Wang B, Wang W, Ye X, Quek SY. 2015. Optimization of formulation and influence of environmental stresses on stability of lycopene-microemulsion. LWT - Food Science and Technology. 60(2): 999–1008.
  • Solanki HK, Pawar DD, Shah DA, Prajapati VD, Jani GK, Mulla A.M., Thakar, P.M., 2013. Development of Microencapsulation Delivery System for Long-Term Preservation of Probiotics as Biotherapeutics Agent. Hindawi Publishing Corporation BioMed Research International. 2013: 21.
  • Spada JC, Marczak LDF, Tessaro IC, Norea CPZ. 2012. Microencapsulation of  β-carotene using native pinho starch, modified pinho starch and gelatin by freeze-drying. International Journal of Food Science and Technology. 47(1): 186–194.
  • Selim K, Tsimidou M, Biliaderis CG. 2000. Kinetic studies of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem. 71: 199–206.
  • Seo E, Min S, Choi M. 2010. Release characteristics of freezedried eugenol encapsulated with β-cyclodextrin by molecular inclusion method. Journal of Microencapsulation. 27(6): 496- 505.
  • [95Silva, D.F., Favaro-Trindade, C.S., Rocha, G.A., Thomazini, M., 2012. Microencapsulation of lycopene by gelatin-pectin complex coacervation. J. Food Process Preserv. 36: 185-190.
  • Soukoulis C, Bohn T. 2018. A Comprehensive Overview on the Micro- and Nano-technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Critical Reviews in Food Science and Nutrition. 58(1): 1-36.
  • Shu B, Yu W, Zhao Y, Liu X. 2006. Study on microencapsulation of lycopene by spray-drying. Journal Food Engineering. 76: 664-669.
  • Sutter SC, Buera P, Elizalde BE. 2007. β-carotene encapsulation in a mannitol matrix as affected by divalent cations and phosphate anion. International Journal of Pharmaceutics. 332: 45–54.
  • Telang C, Yu I, Suryanarayanan R. 2003. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm. Res. 20: 660–667.
  • Tokle T, Mao Y, McClements DJ. 2013. Potential Biological Fate of Emulsion-Based Delivery Systems: Lipid Particles Nanolaminated with Lactoferrin and β-lactoglobulin Coatings. Pharm Res. 30: 3200–3213.
  • Woo MW, Daud WRW, Tasirin SM,Talib MZM. 2009. Controlling food powder deposition in spray dryers: wall surface energy manipulation as an alternative. Journal of Food Engineering 94: 192–198.
  • Xiao JX, Huang GQ, Wang SQ, Sun YT. 2014. Microencapsulation of capsanthin by soybean protein isolatechitosan coacervation and microcapsule stability evaluation. Journal of Applied Polymer Science. 131(1): 1-7.
  • Yazdı SR, Corredig M. 2012. Heating of milk alters the binding of curcumin to casein micelles:A fluorescence spectroscopy study. Food Chemistry. 132(3): 1143-1149.
  • Yıldırım A, Duran M, Koç M. 2018. Su aktivitesinin ve farklı kurutma sistemlerinin biyoaktif bileşenlerin stabiliteleri üzerine etkisi. Gıda. 43 (3): 512-522.
  • Yilmaz T, Maldonado L, Turasan H, Kokini J. 2019. Thermodynamic mechanism of particulation of sodium alginate and chitosan polyelectrolyte complexes as a function of charge ratio and order of addition. Journal of Food Engineering. 254: 42–50.
  • Yuan C, Jin Z, Xu X, Zhuang H, Shen W. 2008. Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chemistry. 109: 264– 268.
  • Zhang Y, Zhong Q. 2013. Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions. Food Hydrocolloids. 33: 1-9.
  • Zuidam NJ, Shimoni E. 2010. Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation technologies for active food ingredients and food processing. (edited by Zuidam, N.J. and Nedovic, V.A.), Heidelberg, Germany: Springer. 3-29.
APA İNAN ÇINKIR N, ağçam e, akyıldız a (2019). Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. , 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
Chicago İNAN ÇINKIR NURAY,ağçam erdal,akyıldız asiye Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. (2019): 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
MLA İNAN ÇINKIR NURAY,ağçam erdal,akyıldız asiye Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. , 2019, ss.2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
AMA İNAN ÇINKIR N,ağçam e,akyıldız a Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. . 2019; 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
Vancouver İNAN ÇINKIR N,ağçam e,akyıldız a Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. . 2019; 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
IEEE İNAN ÇINKIR N,ağçam e,akyıldız a "Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler." , ss.2170 - 2183, 2019. 10.24925/turjaf.v7i12.2170-2183.2944
ISNAD İNAN ÇINKIR, NURAY vd. "Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler". (2019), 2170-2183. https://doi.org/10.24925/turjaf.v7i12.2170-2183.2944
APA İNAN ÇINKIR N, ağçam e, akyıldız a (2019). Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 7(12), 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
Chicago İNAN ÇINKIR NURAY,ağçam erdal,akyıldız asiye Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 7, no.12 (2019): 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
MLA İNAN ÇINKIR NURAY,ağçam erdal,akyıldız asiye Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.7, no.12, 2019, ss.2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
AMA İNAN ÇINKIR N,ağçam e,akyıldız a Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2019; 7(12): 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
Vancouver İNAN ÇINKIR N,ağçam e,akyıldız a Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2019; 7(12): 2170 - 2183. 10.24925/turjaf.v7i12.2170-2183.2944
IEEE İNAN ÇINKIR N,ağçam e,akyıldız a "Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 7, ss.2170 - 2183, 2019. 10.24925/turjaf.v7i12.2170-2183.2944
ISNAD İNAN ÇINKIR, NURAY vd. "Karotenoid Bileşenlerin Mikroenkapsülasyonu ve Kullanılan Yöntemlerdeki Son Gelişmeler". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 7/12 (2019), 2170-2183. https://doi.org/10.24925/turjaf.v7i12.2170-2183.2944