Yıl: 2019 Cilt: 6 Sayı: 4 Sayfa Aralığı: 313 - 321 Metin Dili: Türkçe DOI: 10.34087/cbusbed.616566 İndeks Tarihi: 09-09-2020

İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu

Öz:
Amaç: Mezenkimal kök hücreler (MKH), rejeneratif, immunosupresif, non-immunojenik, anjiyojenik, antiapoptotik ve antiinflamatuvar özellikleri sayesinde hem preklinik araştırmalarda hem de kilinikte önem taşımaktadır. MKH’lerin immunosupresif fonksiyonlarının keşfi, otoimmün hastalıklarda patojenik immun yanıtı düşürmek için yeni terapötik araç olarak araştırmalara konu olmuştur. Plasenta, göbek kordonu ve amniyon sıvısı; kemik iliği ve yağ kökenli MKH’lere göre non-invazif eldesi ve pluripotensi kapasitesiyle avantajlı kök hücre kaynakları arasındadır. Bu çalışmada immün yanıtların incelenmesi için in vitro bir model kullanılarak insan amniyotik sıvı kökenli MKH’lerin (iAS-MKH), fitohemaglütinin ile aktive edilmiş T-hücreleri (PHA-T hücreleri) üzerindeki etkisini; hücre proliferasyonu, apoptoz, sitokin düzeyleri ve regülatuar T hücre (Treg) farklılaşması açısından analiz edilmesi amaçlandı. Gereç ve yöntem: Periferik kandan immunoseleksiyon yöntemi ile izole edilen T-hücreleri karakterize edilip PHA ile uyarıldıktan sonra, iAS-MKH’ler ile insertler kullanılarak indirekt yolla 4 gün ko-kültür (transwell) edildi. Kültür sonrasında PHA-T-hücreleri flow sitometri ve ELISA ile hücre canlılığı ve proliferasyon, sitokin düzeyleri, Treg-farklılaşması ve apoptotik açıdan analiz edildi. Bulgular: iAS-MKH'lerin; in vitroda ko-kültür edildikleri PHA-T hücrelerinin sitokin profilini değiştirerek, canlılık ve proliferasyonu azaltarak ve apoptoz ve Treg farklılaşmasını indükleyerek immunosupresif etki gösterdiği gözlendi. Sonuç: Erken dönemde (prenatal-natal) ve non-invazif tekniklerle eldesi ve atık bir doku olması şeklinde avantajları olan amniyon sıvısındaki bu kök hücrelerin, immunosupresif etkileri olduğu ve ileriye yönelik olarak daha ayrıntılı analizlerle ve in vivo çalışmalarla desteklenmesi gerektiği sonucuna varıldı.
Anahtar Kelime:

-

Öz:
Aim: Mesenchymal stem cells (MSCs) are important in both preclinical researchs and clinical studies due to their regenerative, immunosuppressive, non-immunogenic, angiogenic, antiapoptotic and antiinflammatory properties. The discovery of the immunosuppressive property of MSCs has been the subject of recent researches as a new therapeutic tool for reducing the pathogenic immune response in autoimmune diseases. Harvesting stem cells from placenta, umbilical cord and amniotic fluid compared with bone marrow and fat-derived MSCs is non-invasive and its pluripotency capacity is another advantage. In this study we used an in vitro model to study immune response of human amniotic fluid derived mesenchymal stem cells (hA-MSCs) on phytohemagglutinin (PHA) activated T cells in respect of cell viability, proliferation, apoptosis, cytokine levels and regulatory T cell (Treg) differentiation. Materials and methods: T cells were isolated from blood by immunoselection and it was characterized and indirectly co-cultured (transwell) using inserts for 4 days. After culture, PHA-T cells were analyzed by flow cytometry and ELISA for cell viability and proliferation, cytokine levels, Treg differentiation and apoptotic analysis. Results: It was observed that the PHA-T cells co-cultured with hA-MSCs in vitro showed an immunosuppressive effect by altering the cytokine profile, decreasing viability and proliferation, and inducing apoptosis and Treg differentiation. Conclusion: It was concluded that these stem cells in the amniotic fluid, which has the advantage of being a waste tissue and obtained by prenatal in a non-invasive method in early period, have immunoregulatory effects and should be further researched in invivo studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology. 2005;33(11):1402-16.
  • 2. Burrow KL, Hoyland JA, Rıchardson SM. Human adiposederived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donor-matched bone marrow mesenchymal stem cells during expansion in vitro. Stem Cells International. 2017.
  • 3. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications. 2005;328(1):258-64.
  • 4. Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications. 2005;332(2):370-9.
  • 5. Caplan, AI. Mesenchymal stem cells: Time to change the name!. Stem Cells Translational Medicine, 2017; (6.6): 1445-1451
  • 6. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722- 9.
  • 7. Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation. 2007;84(2):231-7.
  • 8. Grzesiak, J., Krzysztof, M., Karol, W., & Joanna, C.). Isolation and morphological characterisation of ovine adipose-derived mesenchymal stem cells in culture. International Journal of Stem Cells. 2011;4(2): 99.
  • 9. Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V. In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. Journal of Cellular Physiology. 2008;214(3):588-94.
  • 10. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology. 2002;30(1):42-8.
  • 11. García-Olmo D, García-Arranz M, Herreros D, Pascual I, Peiro C, Rodríguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of The Colon & Rectum. 2005;48(7):1416-23.
  • 12. Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, et al. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Engineering. 2005;11(1-2):120-.
  • 13. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry. 1997;64(2):295-312.
  • 14. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. In Vitro Cellular & Developmental Biology-Animal. 1995;31(10):773-9.
  • 15. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation. 2002;109(10):1291- 302.
  • 16. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research. 2000;61(4):364-70.
  • 17. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences. 2004;101(34):12543-8.
  • 18. Prusa A-R, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Medical Science Monitor. 2002;8(11):RA253-RA7.
  • 19. Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research. 2006;16(4):329.
  • 20. Kim J, Lee Y, Kim H, Hwang K, Kwon H, Kim S-K, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation. 2007;40(1):75-90.
  • 21. Holden C, Vogel G. Plasticity: time for a reappraisal?: American Association for The Advancement of Science; 2002.
  • 22. Rice C, Scolding N. Adult stem cells-reprogramming neurological repair? The Lancet. 2004;364(9429):193-9.
  • 23. Fauza D. Amniotic fluid and placental stem cells. Best Practice & Research Clinical Obstetrics & Gynaecology. 2004;18(6):877-91.
  • 24. Hoehn H, Salk D. Morphological and Biochemical Heterogeneity of Amniotic Fluid Cells in Culture. Methods In Cell Biology. 26: Elsevier; 1982. p. 11-34.
  • 25. Gosden CM. Amniotic fluid cell types and culture. British Medical Bulletin. 1983;39(4):348-54.
  • 26. Masuoka K, Asazuma T, Hattori H, Yoshihara Y, Sato M, Matsumura K, et al. Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;79(1):25-34.
  • 27. Kamolz L-P, Kolbus A, Wick N, Mazal P, Eisenbock B, Burjak S, et al. Cultured human epithelium: human umbilical cord blood stem cells differentiate intokeratinocytes under in vitro conditions. Burns. 2006;32(1):16-9.
  • 28. Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, et al. Intervertebral disc cell–mediated mesenchymal stem cell differentiation. Stem Cells. 2006;24(3):707-16.
  • 29. Kundu AK, Putnam AJ. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochemical and Biophysical Research Communications. 2006;347(1):347-57.
  • 30. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, et al. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. 2004;178(1):2-12.
  • 31. Zhang X, Mitsuru A, Igura K, Takahashi K, Ichinose S, Yamaguchi S, et al. Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochemical and Biophysical Research Communications. 2006;340(3):944-52.
  • 32. Sariboyaci, A. E., Demircan, P. C., Gacar, G., Unal, Z. S., Erman, G., & Karaoz, E. (2014). Immunomodulatory properties of pancreatic islet-derived stem cells co-cultured with T cells: Does it contribute to the pathogenesis of type 1 diabetes? Experimental and Clinical Endocrinology & Diabetes, 122(03), 179-189.
  • 33. Demircan, P. C., Sariboyaci, A. E., Unal, Z. S., Gacar, G., Subasi, C., & Karaoz, E. (2011). Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy, 13(10), 1205-1220.
  • 34. Sariboyaci AE, Okcu A, Kokturk S, Gacar G, Kasap M, Demircan PÇ, Caliskan E, Ozogul C, Karaoz E. (2009). Isolation, Characterization And Differentation Potential of Human Amniotic Fluid Derived Multipotent Mesenchymal Stem Cells.. 14th Congress Of The European Hematology Association, Berlin, Germany, Haematologica-The Hematology Journal. 94(2), 458-459.
  • 35. Demircan P, Gacar G, Eker A, Karaöz E. Study on the immuno-suppressive characteristics of human dental pulp derived mesenchymal stem cells on T cells in-vitro: initial study outputs. Haematologica. 2010;95:652. 36. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-22.
  • 37. Ryan J, Barry F, Murphy J, Mahon BP. Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical & Experimental Immunology. 2007;149(2):353-63.
  • 38. Bian L, Guo Z-K, Wang H-X, Wang J-S, Wang H, Li Q-F, et al. In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In vivo. 2009;23(1):21-7.
  • 39. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836-42.
  • 40. Macey MR, Sturgill JL, Morales JK, Falanga YT, Morales J, Norton SK, Yerram N, Shim H, Fernando J, Gifillan AM, Gomez G, Schwartz L, Oskeritzian C, Spiegel S, Conrad D, JRyan JJ.IL-4 and TGF-β1 counterbalance one another while regulating mast cell homeostasis. The Journal of Immunology. 2010;184.(9): 4688-4695.
  • 41. Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. Journal of Experimental Medicine. 1996;184(2):387-96.
  • 42. Maccario R, Podestà M, Moretta A, Cometa A, Comoli P, Montagna D, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90(4):516-25.
  • 43. Plumas J, Chaperot L, Richard M-J, Molens J-P, Bensa J-C, Favrot M-C. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia. 2005;19(9):1597.
APA Uysal O, Semerci Sevimli T, GÜNEŞ S, Tokhi A, Ozel C, EKER SARIBOYACI A (2019). İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. , 313 - 321. 10.34087/cbusbed.616566
Chicago Uysal Onur,Semerci Sevimli Tuğba,GÜNEŞ Sibel,Tokhi Ahmad Fahim,Ozel Ceren,EKER SARIBOYACI AYLA İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. (2019): 313 - 321. 10.34087/cbusbed.616566
MLA Uysal Onur,Semerci Sevimli Tuğba,GÜNEŞ Sibel,Tokhi Ahmad Fahim,Ozel Ceren,EKER SARIBOYACI AYLA İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. , 2019, ss.313 - 321. 10.34087/cbusbed.616566
AMA Uysal O,Semerci Sevimli T,GÜNEŞ S,Tokhi A,Ozel C,EKER SARIBOYACI A İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. . 2019; 313 - 321. 10.34087/cbusbed.616566
Vancouver Uysal O,Semerci Sevimli T,GÜNEŞ S,Tokhi A,Ozel C,EKER SARIBOYACI A İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. . 2019; 313 - 321. 10.34087/cbusbed.616566
IEEE Uysal O,Semerci Sevimli T,GÜNEŞ S,Tokhi A,Ozel C,EKER SARIBOYACI A "İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu." , ss.313 - 321, 2019. 10.34087/cbusbed.616566
ISNAD Uysal, Onur vd. "İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu". (2019), 313-321. https://doi.org/10.34087/cbusbed.616566
APA Uysal O, Semerci Sevimli T, GÜNEŞ S, Tokhi A, Ozel C, EKER SARIBOYACI A (2019). İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 6(4), 313 - 321. 10.34087/cbusbed.616566
Chicago Uysal Onur,Semerci Sevimli Tuğba,GÜNEŞ Sibel,Tokhi Ahmad Fahim,Ozel Ceren,EKER SARIBOYACI AYLA İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 6, no.4 (2019): 313 - 321. 10.34087/cbusbed.616566
MLA Uysal Onur,Semerci Sevimli Tuğba,GÜNEŞ Sibel,Tokhi Ahmad Fahim,Ozel Ceren,EKER SARIBOYACI AYLA İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol.6, no.4, 2019, ss.313 - 321. 10.34087/cbusbed.616566
AMA Uysal O,Semerci Sevimli T,GÜNEŞ S,Tokhi A,Ozel C,EKER SARIBOYACI A İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2019; 6(4): 313 - 321. 10.34087/cbusbed.616566
Vancouver Uysal O,Semerci Sevimli T,GÜNEŞ S,Tokhi A,Ozel C,EKER SARIBOYACI A İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2019; 6(4): 313 - 321. 10.34087/cbusbed.616566
IEEE Uysal O,Semerci Sevimli T,GÜNEŞ S,Tokhi A,Ozel C,EKER SARIBOYACI A "İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu." Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 6, ss.313 - 321, 2019. 10.34087/cbusbed.616566
ISNAD Uysal, Onur vd. "İnsan Amniyon Sıvısı Kökenli Mezenkimal Kök Hücrelerin İmmunosupresyon Etkileri: Treg Regülasyonu". Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 6/4 (2019), 313-321. https://doi.org/10.34087/cbusbed.616566