Yıl: 2019 Cilt: 4 Sayı: 3 Sayfa Aralığı: 201 - 207 Metin Dili: İngilizce İndeks Tarihi: 09-09-2020

Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures

Öz:
BACKGROUND/AIMSTissue engineering approaches have provided treatment options for patients with limited cartilage repair capacity. Most of these approaches rely on isolating and expanding chondrocytes in vitro. Mechanical stress, ultrasound, and electric and electromagnetic fields (EMFs) can be used to stimulate cartilage repair. EMF has been used in the management of conditions such as arthritis and fractures. Most of the previous studies have focused on low-frequency pulsed EMF (PEMF). The aim of the present study was to investigate the effects of low-frequency continuous (sinusoidal) EMF (CEMF) versus PEMF on chondrocytes.MATERIAL and METHODSChondrocytes from bovine nasal cartilage were exposed to low-frequency CEMF versus PEMF, and the proliferation and differentiation capacities of these chondrocytes were determined. The effects of EMFs on retinoic acid receptor beta and transforming growth factor beta (TGF-β) expressions were investigated using quantitative reverse transcription polymerase chain reaction.RESULTSOur observations suggested that there was no difference between the effects of PEMF and CEMF exposure on the proliferation and differentiation capacities of chondrocytes.CONCLUSIONEMF-mediated proliferation of chondrocytes requires the presence of growth factors, especially insulin-like growth factor, in the environment to maintain the chondrogenic phenotype; furthermore, the EMF effect on chondrocytes is independent of TGF-β.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Schmidt-Rohlfing B, Silny J, Woodruff S, Gavenis K. Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix. Rheumatol Int 2008; 28(10): 971-7. [CrossRef]
  • 2. Ongaro A, Pellati A, Masieri FF, Caruso A, Setti S, Cadossi R, et al. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 2011; 32(7): 543-51. [CrossRef]
  • 3. Veronesi F, Torricelli P, Giavaresi G, Sartori M, Cavani F, Setti S, et al. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J Orthop Res 2014; 32(5): 677-85. [CrossRef]
  • 4. Chang CH, Loo ST, Liu HL, Fang HW, Lin HY. Can low frequency electromagnetic field help cartilage tissue engineering? J Biomed Mater Res A 2010; 92(3): 843-51.
  • 5. Ciombor DM, Aaron RK, Wang S, Simon B. Modification of osteoarthritis by pulsed electromagnetic field--a morphological study. Osteoarthritis Cartilage 2003; 11(6): 455-62. [CrossRef]
  • 6. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 2001: S26-33. [CrossRef]
  • 7. Xu C, Oyajobi BO, Frazer A, Kozaci LD, Russell RG, Hollander AP. Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology 1996; 137(8): 3557-65. [CrossRef]
  • 8. Lisignoli G, Cristino S, Piacentini A, Toneguzzi S, Grassi F, Cavallo C, et al. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials 2005; 26(28): 5677-86. [CrossRef]
  • 9. Yang KG, Saris DB, Geuze RE, Helm YJ, Rijen MH, Verbout AJ, et al. Impact of expansion and redifferentiation conditions on chondrogenic capacity of cultured chondrocytes. Tissue Eng 2006; 12(9): 2435-47. [CrossRef]
  • 10. Kafienah W, Jakob M, Demarteau O, Frazer A, Barker MD, Martin I, et al. Three-dimensional tissue engineering of hyaline cartilage: Comparison of adult nasal and articular chondrocytes. Tissue Eng 2002; 8(5): 817-26. [CrossRef]
  • 11. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A 2010; 16(3): 1009-19. [CrossRef]
  • 12. Diederichs S, Zachert K, Raiss P, Richter W. Regulating chondrogenesis of human mesenchymal stromal cells with a retinoic Acid receptor-Beta inhibitor: differential sensitivity of chondral versus osteochondral development. Cell Physiol Biochem 2014; 33(6): 1607-19. [CrossRef]
  • 13. Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I, Hollander AP. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheumatol 2007; 56(1): 177-87. [CrossRef]
  • 14. Zhang H, Li N, Tang Y, Wu W, Zhang Q, Yu Z. Negative functional interaction of retinoic acid and TGF-beta signaling mediated by TG-interacting factor during chondrogenesis. Cell Physiol Biochem 2009; 23(1-3): 157-64. [CrossRef]
  • 15. Kafienah W, Mistry S, Perry MJ, Politopoulou G, Hollander AP. Pharmacological regulation of adult stem cells: Chondrogenesis can be induced using a synthetic inhibitor of the retinoic acid receptor. Stem Cells 2007; 25(10): 2460-8. [CrossRef]
  • 16. Li Z, Yao SJ, Alini M, Stoddart MJ. The role of retinoic acid receptor inhibitor LE135 on the osteochondral differentiation of human bone marrow mesenchymal stem cells. J Cell Biochem 2011; 112(3): 963-70. [CrossRef]
  • 17. Shi S, Mercer S, Eckert GJ, Trippel SB. Growth factor regulation of growth factors in articular chondrocytes. J Biol Chem 2009; 284(11): 6697-704. [CrossRef]
  • 18. De Mattei M, Fini M, Setti S, Ongaro A, Gemmati D, Stabellini G, et al. Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthritis Cartilage 2007; 15(2): 163-8. [CrossRef]
  • 19. Pezzetti F, De Mattei M, Caruso A, Cadossi R, Zucchini P, Carinci F, et al. Effects of pulsed electromagnetic fields on human chondrocytes: An in vitro study. Calcif Tissue Int 1999; 65(5): 396-401. [CrossRef]
  • 20. Pei M, Seidel J, Vunjak-Novakovic G, Freed LE. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun 2002; 294(1): 149-54. [CrossRef]
  • 21. Stolfa S, Skorvanek M, Stolfa P, Rosocha J, Vasko G, Sabo J. Effects of static magnetic field and pulsed electromagnetic field on viability of human chondrocytes in vitro. Physiol Res 2007; 56(Suppl 1): S45-9.
  • 22. Gal P, Vidinsky B, Toporcer T, Mokry M, Mozes S, Longauer F, et al. Histological assessment of the effect of laser irradiation on skin wound healing in rats. Photomed Laser Surg 2006; 24(4): 480-8. [CrossRef]
  • 23. Corallo C, Battisti E, Albanese A, Vannoni D, Leoncini R, Landi G, et al. Proteomics of human primary osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF EMFs) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF). Electromagn Biol Med 2014; 33(1): 3-10. [CrossRef]
  • 24. Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 2004; 10(5-6): 762-70. [CrossRef]
  • 25. Pelttari K, Pippenger B, Mumme M, Feliciano S, Scotti C, Mainil-Varlet P, et al. Adult human neural crest-derived cells for articular cartilage repair. Sci Transl Med 2014; 6(251): 251ra119. [CrossRef]
  • 26. Candrian C, Vonwil D, Barbero A, Bonacina E, Miot S, Farhadi J, et al. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum 2008; 58(1): 197-208. [CrossRef]
  • 27. Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, et al. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics 2004; 25(2): 118-26. [CrossRef]
  • 28. Zhang M, Li X, Bai L, Uchida K, Bai W, Wu B, et al. Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics 2013; 34(1): 74-80. [CrossRef]
  • 29. Vincent TL, Hermansson MA, Hansen UN, Amis AA, Saklatvala J. Basic fibroblast growth factor mediates transduction of mechanical signals when articular cartilage is loaded. Arthritis Rheumatol 2004; 50(2): 526-33. [CrossRef]
  • 30. Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ. IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic-fields. J Bone Miner Res 1995; 10(5): 812-9. [CrossRef]
  • 31. De Mattei M, Pellati A, Pasello M, Ongaro A, Setti S, Massari L, et al. Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthritis Cartilage 2004; 12(10): 793-800. [CrossRef]
  • 32. Ciombor DM, Lester G, Aaron RK, Neame P, Caterson B. Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res 2002; 20(1): 40-50. [CrossRef]
  • 33. Solek P, Majchrowicz L, Bloniarz D, Krotoszynska E, Koziorowski M. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology 2017; 382: 84-92. [CrossRef]
  • 34. Liu Y, Liu WB, Liu KJ, Ao L, Cao J, Zhong JL, et al. Extremely Low-Frequency Electromagnetic Fields Affect the miRNA-Mediated Regulation of Signaling Pathways in the GC-2 Cell Line. PLoS One 2015; 10(10): e0139949. [CrossRef]
  • 35. Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z, et al. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 2011; 49(4): 753-61. [CrossRef]
APA KOZACI L, Bilgin M, Carhan A, ÇALIŞKAN Ş, Kafienah W (2019). Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. , 201 - 207.
Chicago KOZACI LEYLA DIDEM,Bilgin Mehmet Dincer,Carhan Ahmet,ÇALIŞKAN Şerife Gökçe,Kafienah Wael Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. (2019): 201 - 207.
MLA KOZACI LEYLA DIDEM,Bilgin Mehmet Dincer,Carhan Ahmet,ÇALIŞKAN Şerife Gökçe,Kafienah Wael Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. , 2019, ss.201 - 207.
AMA KOZACI L,Bilgin M,Carhan A,ÇALIŞKAN Ş,Kafienah W Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. . 2019; 201 - 207.
Vancouver KOZACI L,Bilgin M,Carhan A,ÇALIŞKAN Ş,Kafienah W Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. . 2019; 201 - 207.
IEEE KOZACI L,Bilgin M,Carhan A,ÇALIŞKAN Ş,Kafienah W "Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures." , ss.201 - 207, 2019.
ISNAD KOZACI, LEYLA DIDEM vd. "Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures". (2019), 201-207.
APA KOZACI L, Bilgin M, Carhan A, ÇALIŞKAN Ş, Kafienah W (2019). Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. Cyprus Journal of Medical Sciences, 4(3), 201 - 207.
Chicago KOZACI LEYLA DIDEM,Bilgin Mehmet Dincer,Carhan Ahmet,ÇALIŞKAN Şerife Gökçe,Kafienah Wael Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. Cyprus Journal of Medical Sciences 4, no.3 (2019): 201 - 207.
MLA KOZACI LEYLA DIDEM,Bilgin Mehmet Dincer,Carhan Ahmet,ÇALIŞKAN Şerife Gökçe,Kafienah Wael Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. Cyprus Journal of Medical Sciences, vol.4, no.3, 2019, ss.201 - 207.
AMA KOZACI L,Bilgin M,Carhan A,ÇALIŞKAN Ş,Kafienah W Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. Cyprus Journal of Medical Sciences. 2019; 4(3): 201 - 207.
Vancouver KOZACI L,Bilgin M,Carhan A,ÇALIŞKAN Ş,Kafienah W Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures. Cyprus Journal of Medical Sciences. 2019; 4(3): 201 - 207.
IEEE KOZACI L,Bilgin M,Carhan A,ÇALIŞKAN Ş,Kafienah W "Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures." Cyprus Journal of Medical Sciences, 4, ss.201 - 207, 2019.
ISNAD KOZACI, LEYLA DIDEM vd. "Effects of Low-Frequency Electromagnetic Fields on Chondrocytes in Short-Term Cultures". Cyprus Journal of Medical Sciences 4/3 (2019), 201-207.