Onur ÜLGENALP
(Ankara Üniversitesi, Veteriner Fakültesi, Viroloji Anabilim Dalı, Ankara, Türkiye)
BAHATTİN TAYLAN KOÇ
(Adnan Menderes Üniversitesi, Veteriner Fakültesi, Viroloji Anabilim Dalı, Aydın, Türkiye)
TUBA ÇİĞDEM OĞUZOĞLU
(Ankara Üniversitesi, Veteriner Fakültesi, Viroloji Anabilim Dalı, Ankara, Türkiye)
Yıl: 2018Cilt: 75Sayı: 3ISSN: 0377-9777 / 1308-2523Sayfa Aralığı: 291 - 304Türkçe

195 0
Viral enfeksiyonlarda otofaji
Viruslar hücre içi obligat parazit olmalarından vebirçok virus ailesinin farklı replikasyon stratejileriolmasından ötürü diğer mikroorganizmalara kıyaslahücre içi daha çok organel ve işlev ile yakın ilişkili olup bumekanizmalar üzerinde etkileri mevcuttur. Bu etkilerinbaşında da hiç şüphesiz hücre ölüm mekanizmaları yeralmaktadır. Viruslar ile yapılan replikasyon-patogenezçalışmalarında hücre ölümü olarak apoptoz ve nekrozüzerine pekçok çalışma yapılmıştır. Otofaji ise son yıllarakadar viral enfeksiyonlarda çok değerlendirilmemişama gündeme gelmesiyle viral enfeksiyonlarla ilişkisiaraştırılmaya başlanmıştır. Otofaji (“Auto” ve “Phagy”;kelime anlamı “kendi kendini yeme”); hücrelerin çeşitlistres durumlarında kendilerini yok olmaktan korumakve hemostazı devam ettirmek için kullandıklarıkatabolik bir süreç olup hücre bu süreçte ihtiyacı olanenerjiyi kendi öz kaynaklarını sindirerek elde eder.Otofaji; organizmada çift katlı membrana sahip veziküloluşumu ile şekillenen ve makro-, mikro-, şaperonilişkili- otofaji olmak üzere bugüne dek tanımlanmışüç çeşidi bulunan fizyolojik bir olaydır. Son yıllardaotofaji ve viral enfeksiyonlarla ilgili çalışmalarınsayısında hızlı bir artış yaşanmasının sonucu olarak;otofaji ve viruslar arasındaki karşılıklı etkileşim, DNAveya RNA virusu ailesinde bulunan birçok virus türü içinaraştırma konusu olarak ilgi çekmiştir. Virusların otofajimekanizmasını immünolojik yanıttan kaçabilmek veviral yaşam döngülerini devam ettirebilmek adınanasıl kullandıkları ve viral patogenezin molekülermekanizmalarında otofajinin yerinin sorgulanmasıtemel çalışma konularını oluşturmaktadır. Buaraştırmalar ışığında elde edilen bilgilere göre;otofaji ve viruslar arasında iki tarafı keskin bir bıçağabenzetilebilecek bir ilişki bulunmaktadır. Hücre ölümmekanizmalarından olan apoptoz ve nekrozdan farklıolarak bu fizyolojik olay; hücrenin stres durumundaoluşan besin ihtiyacına bir cevap olarak ortayaçıkacağı gibi, konakçı hücrenin bazı patojenlerdenkurtulmak amacıyla başlattığı bir seri mekanizmayı datetiklemektedir. Hatta bu olay, viruslar tarafından kendilehlerine olacak şekilde replikasyonlarını başlatabilmekveya devam ettirebilmek ve viral zarflarının oluşumunayardımcı olarak da kullanılmaktadır. Bu fizyolojik olayile viruslar arasındaki ilişkiyi anlamaya yönelik bilgilerinsunulduğu bu derlemede; otofaji mekanizmaları,kullanılan yolaklar, otofajiyi uyaran ve başlatanproteinler, otofajinin çeşitli viruslar (tek başına birvirus veya aynı aileden iki virus arasındaki etkileşimdurumunda) tarafından nasıl kullanıldığına yönelikbilgiler bulunmaktadır.
DergiDerlemeErişime Açık
  • 1. Jackson WT. Viruses And The Autophagy Pathway. Virology, 2015; 479: 450-6.
  • 2. Tsukada M, Ohsumı Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS letters, 1993; 333 (1-2): 169-174.
  • 3. Harding, TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol, 1995; 131 (3): 591-602.
  • 4. OncoTrust. https://www.drozdogan.com/2016- nobel-tip-odulu-otofaji-calismalari-ileyoshinori-ohsumiye-verildi/ (Erişim Tarihi: 25.12.2017).
  • 5. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell, 2011; 147 (4): 728-41.
  • 6. Büyük İ, Soydam-Aydın S, Aras S. Bitkilerin stres koşullarına verdiği moleküler cevaplar. Türk Hij Den Biyol Derg, 2012; 69 (2): 97-107.
  • 7. Gozuacik D, Kimchi A. Autophagy And Cell Death. Curr Top Dev Biol, 2007; 78: 217-45.
  • 8. Karadağ A. Otofaji: Programlı Hücre Ölümü. Ank Sağ Hiz Derg, 2016; 18 (2): 19-25.
  • 9. Shintani T, Klionsky DJ. Autophagy in health ve disease: a double-edged sword. Science. 2004; 306 (5689): 990-95.
  • 10. Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell, 2009; 34: 259-69.
  • 11. Glick D, Barth S, Macleod KF. Autophagy: cellular ve molecular mechanisms. J Path, 2010; 221 (1): 3-12.
  • 12. Behrends C, Fulda S. Receptor proteins in selective autophagy. Int J Cell Biol, 2012; 673290: 1-9.
  • 13. Li WW, Li J, Bao JK. Microautophagy: lesserknown self-eating. Cell Mol Life Sci, 2012; 69 (7): 1125–36.
  • 14. Bejarano E, Cuervo AM. Chaperone-Mediated Autophagy. Proceed Am Thorac Soc. 2010; 7 (1): 29-39.
  • 15. Burch GE, Harb JM. Electronmicroscopic studies of viral pancreatitisin coxsackie B4 virus infected mice. Exp Mol Pathol, 1979; 31: 23–35.
  • 16. Suhy DA, Giddings TH, Kirkegaard K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol, 2000; 74: 8953–65.
  • 17. Klein KA, Jackson WT. Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells. J Virol 2011; 85: 9651–54.
  • 18. Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA, 2009; 106: 14046–51.
  • 19. Panyasrivanit M, Khakpoor A, Wikan N, Smith DR. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol, 2009; 90(2):448–56.
  • 20. Heaton NS, Randall G. Denguevirus-induced autophagy regulates lipid metabolism. Cell Host Microbe, 2010; 8 (5): 422-32.
  • 21. Oguzoglu TC, Muz D, Yılmaz V, Alkan F, Akça Y, Burgu İ. Molecular characterization of Bovine virus diarrhoea viruses species 2 (BVDV-2) from cattle in Turkey. Trop Anim Health Prod, 2010; 42: 1175–80.
  • 22. Oğuzoğlu TC, Muz D, Yılmaz V, Timurkan MÖ, Alkan F, Akça et al. Molecular Characteristics of Bovine Virus Diarrhoea Virus 1 Isolates from Turkey: Approaches for an Eradication Program. Transbound Emerg Dis, 2012; 59 (4): 303-10.
  • 23. Fu Q, Shi H, Ren Y, Guo F, Ni W, Qiao J et al. Bovine viral diarrhea virus infection induces autophagy in MDBK cells. J Microbiol, 2014; 52(7): 619-25.
  • 24. Mrigendra KSR, Karim A, Mahmoud FD, Lyle JB, Jason K, Adam DH et al. Both cytopathic ve non-cytopathic bovine viral diarrhea virus (BVDV) induced autophagy at a similar rate. Vet Immunol Immunopathol, 2017; 193: 1-9.
  • 25. Lussignol M, Queval C, Bernet-Camard MF, CotteLaffitte J, Beau I, Codogno P et al. The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR. J Virology, 2013; 87(2): 859-71.
  • 26. Sinha SC, Colbert CL, Becker N, Wei Y, Levine B. Molecular basis of the regulation of Beclin 1-dependent autophagy by the γ-herpesvirus 68 Bcl-2 homolog M11. Autophagy, 2008; 4(8): 989- 97.
  • 27. Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe, 2014; 15 (2): 239–47.
  • 28. Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol, 2008; 82(18): 9143-53.
  • 29. Hung CH, Chen LW, Wang WH, Chang PJ, Chiu YF, Hung CC et al. Regulation of autophagic activation by Rta of epstein-barr virus via the extracellular signal-regulated kinase pathway. J Virol, 2014; 88: 12133–45.
  • 30. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Autophagy pathway intersects with HIV1 biosynthesis and regulates viral yields in macrophages. J Cell Biol, 2009; 186: 255–68.
  • 31. Liu B, Fang M, Hu Y, Huang B, Li N, Chang C, et al. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation. Autophagy, 2014; 10: 416–30.
  • 32. Buckingham EM, Carpenter JE, Jackson W, Grose C. Autophagy and the effects of its inhibition on varicella-zoster virus glycoprotein biosynthesis and infectivity. J Virol, 2014; 88 (2): 890–902.
  • 33. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 1998; 72(11): 8586–96.
  • 34. Dong X, Levine B. Autophagy ve Viruses: Adversaries or Allies? J Innate Immun, 2013; 5(5): 480-93.
  • 35. Brandstadter JD, Yang Y. Natural Killer Cell Responses to Viral Infection. J Innate Immun 2011; 3: 274-9.
  • 36. López-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez S. Involvement of autophagy in NK cell development and function. Autophagy, 2017; 13(3): 633-6.
  • 37. Raftery MJ, Wolter E, Fillatreau S, Meisel H, Kaufmann SH, Schonrich G. NKT cells determine titer ve subtype profile of virusspecific IgG antibodies during herpes simplex virus infection. J Immunol, 2014; 192 (9): 4294–302.
  • 38. Hwang S, Maloney NS, Bruinsma MW, Goel G, Dual E, Zhang L et al. NondegradativeroleofAtg5- Atg12/Atg16L1 autophagy protein complex in anti viral activity of inter feron gamma. CellHost Microbe, 2012; 11: 397–409.
  • 39. Moy RH, Gold B, Molleston JM, Schad V, Yanger K, Salzano MV et al. Antiviral autophagy restricts Rift Valley fever virus infection ve is conserved from flies to mammals. Immunity, 2014; 40: 51–65.
  • 40. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA, 2013; 110: 12048– 53.
  • 41. Mateo R, Nagamine CM, Spagnolo J, Méndez E, Rahe M, Gale M et al. Inhibition of cellular autophagy deranges dengue virion maturation. J Virol, 2013; 87: 1312–21.
  • 42. Richards AL, Jackson WT. Intracellular Vesicle Acidification Promotes Maturation of Infectious Poliovirus Particles. PLoS Pathogens, 2012; 8(11): 1-15.
  • 43. Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses B et al. Coxsackie virus infection induces autophagy-like vesicles and megaphagosomes in pancreaticacinar cells in vivo. J Virol, 2010, 84: 12110–24.
  • 44. Manuse MJ, Briggs CM, Parks GD. Replicationindependent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 Requires TLR7 and autophagypathways. Virology, 2010; 405: 383–9.
  • 45. Ding B, Zhang G, Yang X, Zhang S, Chen L, Yan Q et al. Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome–lysosome fusion to increase virus production. Cell Host Microbe, 2014; 15: 564–77.
  • 46. Shi J, Wong J, Piesik P, Fung G, Zhang J, Jagdeo J et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling. Autophagy, 2013; 9: 1591–603.
  • 47. Coyne CB, Bozym R, Morosky SA, Hanna SL, Mukherjee A, Tudor M et al. Comparative RNAi screening reveal shost factors in volved in Enterovirus infection of polarize dendothelialmonolayers. Cell Host Microbe, 2011; 9: 70–82.
  • 48. Zhang HT, Chen GG, Hu BG, Zhang ZY, Yun JP, He ML et al. Hepatitis B virus x protein induces autophagy via activating death-associated proteinkinase. J Viral Hepat, 2014; 21: 642–9.
  • 49. Li J, Liu Y, Wang Z, Liu K, Wang Y, Liu J etal. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol, 2011; 85 (13): 6319–33.
  • 50. Nowag H, Guhl B, Thriene K, Romao S, Ziegler U, Dengjel J et al. Macroautophagy proteins assist epstein barr virus production and getin corporated in to the virus particles. EBioMedicine, 2014; 1: 116–25.
  • 51. Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V. Unconventional secretion of Acb1 is mediated by autophagosomes. J Cell Bio, 2010; 188: 527–36.
  • 52. Bird SW, Maynard ND, Covert MW, Kirkegaard K. Nonlytic viral spread enhanced by autophagy components. Proc Natl Acad Sci USA, 2014; 111 (36): 13081-6.
  • 53. Gonzalez ME, Carrasco L. Viroporins. FEBS Letters, 2003; 552 (1): 28–34.
  • 54. Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S. Influenza virus morphogenesis and budding. Virus Res, 2009; 143: 147–61.
  • 55. Dong Y, Zeng CQ-Y, Ball JM, Estes MK, Morris AP. The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol1,4,5-trisphosphateproduction. Proc Natl Acad Sci USA, 1997; 94 (8): 3960-5.
  • 56. Crawford SE, Hyser JM, Utama B, Estes MK. Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-β signaling is required for rotavirus replication. Proc Natl Acad Sci USA, 2012; 109: 3405–13.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.