Yıl: 2018 Cilt: 75 Sayı: 2 Sayfa Aralığı: 213 - 224 Metin Dili: Türkçe DOI: 10.5505/TurkHijyen.2018.32068 İndeks Tarihi: 20-07-2020

Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü

Öz:
Barsak mikrobiyotası, gastrointestinal sistemdeyaşayan organizmaların tamamı olarak tanımlanmaktadır.Barsak mikrobiyotası çok komplekstir ve barsakmikrobiyotasında başlıca bakteri ve arkebakteri olmaküzere virüs, mantar ve birçok ökaryotik mikroorganizmayer almaktadır. Bu organizmaların çoğu kalın barsaktayer almakta ve yaşamın sürdürülmesinde önemlifizyolojik rol oynamaktadır. Barsak mikrobiyotasıdinamiktir ve beslenme alışkanlıkları, yaşam tarzı,antibiyotikler ve genetik geçmiş ile düzenlenmektedir.Barsak mikrobiyotası besinlerden çeşitli metabolitlerinüretilmesinde önemli role sahiptir. Mikrobiyota vücudaalınan besinlere göre farklı metabolitler oluşturmaktadır.Bu metabolitlerin bazıları karbon ve enerji kaynağıolarak konak tarafından kullanılmakta ve obezite,iştah ve kolonik inflamasyonun modülasyonu üzerindefaydalı etkiler göstermekte, bazıları ise olumsuzetkiler meydana getirmektedir. Mikrobiyota ile hastalıkrisklerinin önceden tespit edilebileceği öngörülmektedir.Yapılan çalışmalarda, barsak mikrobiyotası bileşimigastrointestinal sistem hastalıkları, obezite, diyabet,kanser ve depresyon, otizm, anksiyete ve Parkinsonhastalığı gibi hemen hemen tüm hastalıklarlailişkilendirilmiştir. Barsak mikrobiyotasının; barsakimmunitesi ve barsak motilitesinin düzenlenmesi,besinlerin sindirilmesi, enerji üretimi, intestinalbariyerin ve barsak vasküler sistemin düzenlenmesigibi barsakla ilgili etkileri iyi bilinmektedir fakatekstra intestinal etkileri hakkındaki kesin bilgilerhenüz sınırlıdır. Mikrobiyota ve metabolitlerin pek çoksistem üzerine ekstra intestinal etkileri araştırılıyorkenözellikle kardiyovasküler sistem üzerine etkileri dikkatçekmektedir. Örneğin en sık görülen kardiyovaskülerhastalıklardan kalp krizi, inme ve periferal damarhastalıkları gibi çoğunlukla tromboemboliye ikincilgelişen hastalıklarda barsak mikrobiyotasının rolüolduğu düşünülmektedir. Kardiyovasküler hastalıklardabarsak mikrobiyotasının rolü hakkında en ilginç kanıtlar,kardiyovasküler risk ile ilişkili yeni metabolitlerinve yolakların tanımlanması ve plazma örneklerininmetabolik analizleri sonucu elde edilmesidir. Ancakbu hastalıklarda mikrobiyotanın oluşturduğu etkininmekanizmaları hala net olarak anlaşılmış değildir.Dünya Sağlık Örgütü’ne göre batı ülkelerinde meydanagelen ölümlerin ana nedenlerinden biri kardiyovaskülerhastalıklardır ve her yıl 20 milyon ölüm kardiyovaskülerhastalıklardan meydana gelmektedir. Bu kadar fazlaölümün görüldüğü kardiyovasküler hastalıklarda,mikrobiyotanın rolünün gösterilmesi bu tür yaygınhastalıkların tedavisinde güncel tedavi yaklaşımlarındanfarklı, umut verici, yeni tedavi seçenekleri sağlayabilir.Bu nedenle, kardiyovasküler hastalıklarda terapötikstrateji olarak barsak mikrobiyotasının düzenlenmesiüzerine ilgi giderek artmaktadır. Bu derlemede, barsakmikrobiyotası ile kardiyovasküler hastalıkların ilişkisiüzerine yapılmış son çalışmalara ve bu hastalıklarıkontrol etmek için barsak mikrobiyotasını düzenleyecekolası yollara odaklanılmıştır.
Anahtar Kelime:

The role of gut microbiota in cardiovascular diseases

Öz:
The gut microbiota is defined as the all of the organism living in the gastrointestinal tract. The gut microbiota is very complex, and contains mainly bacteria and archebacteria, viruses, fungi and many eukaryotic microorganisms. Many of these organisms located in the large intestine and plays an important physiological role in the maintaining of life. Gut microbiota is dynamic and is regulated by dietary habits, lifestyle, antibiotics and genetic background. The gut microbiota has an important role in the production of various metabolites from nutrients. Microbiota produces different metabolites according to the nutrients. Some of these metabolites are used by the host as a source of carbon and energy and have beneficial effects on the modulation of obesity, appetite and colonic inflammation, while others cause adverse effects. It is predicted that disease risks can be estimated with microbiota. Gut microbiota was associated with almost all diseases such as gastrointestinal tract diseases, obesity, diabetes, cancer and depression, autism, anxiety and Parkinson’s disease. Intestine-related effects of gut microbiota such as intestine immunity and intestinal motility regulation, digestion of nutrients, energy production, intestinal barrier and regulation of the intestinal vascular system are well known, but exact information about extra intestinal effects is still limited. While microbiota and its metabolites are being investigated for extra intestinal effects on many systems, the effects on the cardiovascular system are noteworthy. For example, it is thought that gut microbiota plays a role in diseases that are secondary to thromboembolism such as heart attack, stroke and peripheral vascular diseases. The most interesting evidence about the role of gut microbiota in cardiovascular diseases is the identification of new metabolites and pathways associated with cardiovascular risk and the metabolic analysis of plasma samples. However, the mechanism of action of microbiota in these diseases is still unclear. According to the World Health Organization, cardiovascular diseases are one of the main cause of deaths in Western countries. Every year, 20 million deaths occur in cardiovascular diseases. The demonstration of the role of microbiotia in cardiovascular diseases where mortalite is high may provide new, promising, and different treatment options than current treatment approaches. Therefore, interest in regulation of gut microbiota as a therapeutic strategy in cardiovascular diseases is increasing. This review focuses on recent studies on the relationship between gut microbiota and cardiovascular disease and possible ways to regulate gut microbiota to control of these diseases.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Miele L, Giorgio V, Alberelli MA, De Candia E, Gasbarrini A, Grieco A. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr Cardiol Rep, 2015; 17(12): 120.
  • 2. Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-FarhaM. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis, 2016; 15: 108.
  • 3. Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol, 2011; 8(2):110-20.
  • 4. Ji B, Nielsen J. From next-generation sequencing to systematic modeling of the gut microbiome. Front Genet, 2015; 6: 219.
  • 5. Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS One, 2013; 8(11): e78331.
  • 6. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol, 2015; 33(9): 496-503.
  • 7. Munyaka PM, Khafipour E, Ghia JE. Externalinfluence of early childhood establishment of gutmicrobiota and subsequent health implications. Front Pediatr, 2014; 2: 109.
  • 8. Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J, 2016; 92(1087): 286-300.
  • 9. Pacheco AR, Sperandio V. Enteric pathogens exploit the microbiota-generated nutritional environment of the gut. Microbiol Spectr, 2015; 3(3): doi: 10.1128/microbiolspec.MBP-0001- 2014.
  • 10. Marietta E, Rishi A, Taneja V. Immunogenetic control of the intestinal microbiota. Immunology, 2015; 145(3): 313-22.
  • 11. Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V, et al. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide degrading enzymes. Proc Natl Acad Sci U S A, 2014; 111(35): E3708-17.
  • 12. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells. Gastroenterology, 2013; 145(2): 396-406 e1-10.
  • 13. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short chain fatty acid receptor GPR43. Nat Commun, 2013; 4: 1829.
  • 14. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and hostmetabolic regulation. Nutrients, 2015; 7(4): 2839-49.
  • 15. Li T, Chiang JY. Bile acids as metabolic egulators. Curr Opin Gastroenterol, 2015. 31(2): 159-65.
  • 16. Balmer ML, Slack E, de Gottardi A, Lawson MA, Hapfelmeier S, Miele L, et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med, 2014; 6(237): 237ra66.
  • 17. Thuny F, Richet H, Casalta JP, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One, 2010; 5(2): e9074.
  • 18. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics, 2015; 135(4): 617-26.
  • 19. Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest, 2014; 124(10): 4212-8.
  • 20. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 2010; 5(3): e9836.
  • 21. Brown K, DeCoffe D, Molcan E, Gibson DL. Dietinduced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 2012; 4(8): 1095-119.
  • 22. Pozo-Rubio T, Mujico JR, Marcos A, Puertollano E, Nadal I, Sanz Y, et al. Immunostimulatory effect of faecal Bifidobacterium species of breast-fed and formula-fed infants in a peripheral blood mononuclear cell/Caco-2 co-culture system. Br J Nutr, 2011; 106(8): 1216-23.
  • 23. Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr, 2012; 66(11): 1234-41.
  • 24. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev, 2004; 17(2): 259-75.
  • 25. Rabiei S, Shakerhosseini R, Saadat N. The effects of symbiotic therapy on anthropometric measures, body composition and blood pressure in patient with metabolic syndrome: a triple blind RCT. Med J Islam Repub Iran, 2015; 29: 213.
  • 26. Wu GD, Bushmanc FD, Lewis JD. Diet, the human gut microbiota, and IBD. Anaerobe, 2013; 24: 117-20.
  • 27. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI.T he effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med, 2009; 1(6): p. 6ra14.
  • 28. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 2010; 107 (33): 14691-6.
  • 29. Mika A, Van Treuren W, González A, Herrera JJ, Knight R, Fleshner M. Exercise is more effective at altering gut microbial composition and producing stable changes inl ean mass in juvenile versus adult male F344 rats. PLoS One, 2015; 10(5): e0125889.
  • 30. Miller MA, McTernan PG, Harte AL, Silva NF, Strazzullo P, Alberti KG, et al. Ethnic and sex differences in circulating endotoxin levels: A novel marker of atherosclerotic and cardiovascular risk in a British multi-ethnic population. Atherosclerosis, 2009; 203(2): 494-502.
  • 31. Wożakowska-Kapłon B, Włosowicz M, GorczycaMichta I, Górska R. Oral health status and the occurrence and clinical course of myocardial infarction in hospital phase: a casecontrol study. Cardiol J, 2013; 20(4): 370-7.
  • 32. Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A, 2011; 108 (Suppl 1): 4592-8.
  • 33. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 2012; 3: 1245.
  • 34. Andraws R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA, 2005; 293(21): 2641-7.
  • 35. Grayston JT, Kronmal RA, Jackson LA, Parisi AF, Muhlestein JB, Cohen JD, et al. Azithromycin for the secondary prevention of coronary events. N Engl J Med, 2005; 352(16): 1637-45.
  • 36. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A, 2006; 103(33): 12511-6.
  • 37. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, et al. Prognostic value of choline and betaine depends on intestinal microbiotagenerated metabolite trimethylamine-N-oxide. Eur Heart J, 2014; 35(14): 904-10.
  • 38. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol, 2014; 64(18): 1908-14.
  • 39. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med, 2013; 368(17): 1575-84.
  • 40. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med, 2013; 19(5): 576-85.
  • 41. Singh V, Chassaing B, Zhang L, San Yeoh B, Xiao X, Kumar M, et al. Microbiota-Dependent Hepatic Lipogenesis Mediated by Stearoyl CoA Desaturase 1 (SCD1) Promotes Metabolic Syndrome in TLR5- Deficient Mice. Cell Metab, 2015; 22(6): 983-96.
  • 42. den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, et al. Short-chain fatty acids protect against high-fat diet-ınduced obesity via a ppargamma-dependent switch from lipogenesis to fat oxidation. Diabetes, 2015; 64(7): 2398-408.
  • 43. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun, 2014; 5: 3611.
  • 44. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesityassociated metabolic parameters PLoS One, 2015; 10(5): e0126931.
  • 45. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine n-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail, 2016; 9(1):e002314.
  • 46. Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart, 2016; 102(11): 841-8.
  • 47. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol, 2007; 50(16): 1561-9.
  • 48. Tang WW, Hazen SL. Dietary metabolism, gut microbiota and acute heart failure. Heart, 2016; 102(11): 813-4.
  • 49. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the - treatment of atherosclerosis. Cell, 2015; 163(7): 1585-95.
  • 50. Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, et al. Suppression of intestinal microbiota-dependent production of proatherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sci, 2014; 117(2): 84-92.
  • 51. Brugère JF, Borrel G, Gaci N, Tottey W, O’Toole PW, Malpuech-Brugère C. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease.
  • 52. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early life body mass. Int J Obes (Lond), 2013; 37(1): 16-23.
  • 53. Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R, et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb, 2010; 17(8): 796-804.
  • 54. Singh V, Yeoh BS, Vijay-Kumar M. Gut microbiome as a novel cardiovascular therapeutic target. Curr Opin Pharmacol, 2016; 27: 8-12.
  • 55. Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis, 2015; 2(1): ofv004.
APA AKSOYALP Z, NACİTARHAN C (2018). Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. , 213 - 224. 10.5505/TurkHijyen.2018.32068
Chicago AKSOYALP Zinnet Şevval,NACİTARHAN Cahit Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. (2018): 213 - 224. 10.5505/TurkHijyen.2018.32068
MLA AKSOYALP Zinnet Şevval,NACİTARHAN Cahit Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. , 2018, ss.213 - 224. 10.5505/TurkHijyen.2018.32068
AMA AKSOYALP Z,NACİTARHAN C Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. . 2018; 213 - 224. 10.5505/TurkHijyen.2018.32068
Vancouver AKSOYALP Z,NACİTARHAN C Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. . 2018; 213 - 224. 10.5505/TurkHijyen.2018.32068
IEEE AKSOYALP Z,NACİTARHAN C "Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü." , ss.213 - 224, 2018. 10.5505/TurkHijyen.2018.32068
ISNAD AKSOYALP, Zinnet Şevval - NACİTARHAN, Cahit. "Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü". (2018), 213-224. https://doi.org/10.5505/TurkHijyen.2018.32068
APA AKSOYALP Z, NACİTARHAN C (2018). Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. Türk Hijyen ve Deneysel Biyoloji Dergisi, 75(2), 213 - 224. 10.5505/TurkHijyen.2018.32068
Chicago AKSOYALP Zinnet Şevval,NACİTARHAN Cahit Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. Türk Hijyen ve Deneysel Biyoloji Dergisi 75, no.2 (2018): 213 - 224. 10.5505/TurkHijyen.2018.32068
MLA AKSOYALP Zinnet Şevval,NACİTARHAN Cahit Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. Türk Hijyen ve Deneysel Biyoloji Dergisi, vol.75, no.2, 2018, ss.213 - 224. 10.5505/TurkHijyen.2018.32068
AMA AKSOYALP Z,NACİTARHAN C Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. Türk Hijyen ve Deneysel Biyoloji Dergisi. 2018; 75(2): 213 - 224. 10.5505/TurkHijyen.2018.32068
Vancouver AKSOYALP Z,NACİTARHAN C Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü. Türk Hijyen ve Deneysel Biyoloji Dergisi. 2018; 75(2): 213 - 224. 10.5505/TurkHijyen.2018.32068
IEEE AKSOYALP Z,NACİTARHAN C "Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü." Türk Hijyen ve Deneysel Biyoloji Dergisi, 75, ss.213 - 224, 2018. 10.5505/TurkHijyen.2018.32068
ISNAD AKSOYALP, Zinnet Şevval - NACİTARHAN, Cahit. "Kardiyovasküler hastalıklarda barsak mikrobiyotasının rolü". Türk Hijyen ve Deneysel Biyoloji Dergisi 75/2 (2018), 213-224. https://doi.org/10.5505/TurkHijyen.2018.32068