Yıl: 2020 Cilt: 44 Sayı: 4 Sayfa Aralığı: 377 - 387 Metin Dili: İngilizce DOI: 10.3906/bot-2002-33 İndeks Tarihi: 20-08-2020

Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.)

Öz:
Sugar beet is an industrial crop cultivated mostly for sucrose production. Today, modern hybridization applications haveraised the sugar content to 20%. Considering the increased demand globally, it is required to develop new yield–increasing applicationstrategies. This requires extensive knowledge of the genetic mechanisms to control plant growth and metabolism. Investigation ofphytohormones is promising to increase our knowledge of plant growth and developmental processes. Strigolactones are recentlyintroduced plant hormones. They are responsible for shoot and root architecture, and involved in development, communication,germination, and responses to stress. Four major proteins (AtD27, MAX1, MAX3, MAX4) are responsible for the strigolactonebiosynthesis. MAX1 protein is essential for the distinct production of strigolactone molecules. The studies on strigolactones have beencarried out mostly using Arabidopsis thaliana. There are only few studies on agriculturally important plants. No reports are availablefor the investigation of strigolactone biosynthesis in sugar beet (Beta vulgaris). In this manuscript, we profiled the expression of MAX1gene in sugar beet treated with strigolactone hormones (rac-GR24, (±)-strigol and (±)-5-deoxystrigol) and a strigolactone biosynthesisinhibitor (TIS108). Our data suggest that MAX1 has a conserved biosynthetic and regulatory metabolism in sugar beet compared topreviously investigated plant species.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Al-Babili S, Bouwmeester HJ (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology 66: 161-186. doi: 10.1146/annurev-arplant-043014- 114759
  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M et al. (2012). The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335: 1348-1351.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.
  • Booker J, Sieberer T, Wright W, Williamson L, Willett B et al (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell 8: 443-449.
  • Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M et al. (2012). The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiology 158: 225-238. doi: 10.1104/pp.111.182725
  • Campbell G, Skillings JH (1985). Nonparametric stepwise multiple comparison procedures. Journal of the American Statistical Association 80: 998-1003. doi: 10.1080/01621459.1985.10478216
  • Ferrándiz C, Fourquin C, Prunet N, Scutt CP, Sundberg E et al. (2010). Carpel development. Advances in Botanical Research 55: 1-73.
  • Foo E, Davies NW (2011). Strigolactones promote nodulation in pea. Planta 234 (5): 1073.
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA et al. (2008). Strigolactone inhibition of shoot branching. Nature 455: 189-194.
  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA et al (2011). Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiology 155 (2): 974-987.
  • Lange W, Brandenburg WA, De Bock TSM (1999). Taxonomy and cultonomy of beet (Beta vulgaris L.). Botanical Journal of the Linnean Society 130: 81-96.
  • Dohm J, Minoche A, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F et al. (2014). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505: 546-549. doi: 10.1038/nature12817
  • Finkenstadt VL (2013). A review on the complete utilization of the sugarbeet. Sugar Tech 16 (4): 339-346. doi:10.1007/s12355- 013-0285-y
  • Gürel E (1997). Callus and root development from leaf explants of sugar beet (Beta vulgaris L.): Variability at variety, plant and organ level. Turkish Journal of Botany 21: 131-136.
  • Gürel S, Gürel E, Kaya Z (2000). Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Reports 19: 1155-1159.
  • Gürel S, Gürel E, Kaya Z (2001). Callus development and indirect shoot regeneration from seedling explants of sugar beet (Beta vulgaris L.) cultured in vitro. Turkish Journal of Botany 25: 25- 33.
  • Gürel S, Gürel E, Kaya Z (2002). Establishment of cell suspension cultures and plant regeneration in sugar beet (Beta vulgaris L.). Turkish Journal of Botany 26: 197-205.
  • Gürel E, Gürel S, Lemaux PG (2008). Biotechnology applications for sugar beet. Critical Reviews in Plant Sciences 27: 108-140. doi:10.1080/07352680802202000.
  • Ito S, Umehara M, Hanada A, Yamaguchi S, Asami T (2013). Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signaling and Behavior 8 (5): e24193. doi:10.4161/ psb.24193
  • Jasik J, Bokor B, Stuchlik S, Micieta, K., Turna J et al. (2016). Effects of auxins on PIN-FORMED2 PIN2) dynamics are not mediated by inhibiting PIN2 endocytosis. Plant Physiology 172: 1019-1031.
  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research 36: W5-W9.
  • Kramna, B, Prerostova, S, Vankova, R (2019). Strigolactones in an experimental context. Plant Growth Regulation 88: 113-128.
  • Lantzouni O, Klermund C, Schwechheimer C (2017). Largely additive effects of gibberellin and strigolactone on gene expression in Arabidopsis thaliana seedlings. Plant Journal 92: 924-938.
  • Lin H, Wang R, Qian Q, Yan M, Meng X et al. (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21: 1512-1525.
  • Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K et al. (2009). Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Bioscience, Biotechnology, and Biochemistry 73: 2460-2465. doi: 10.1271/ bbb.90443
  • Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH et al. (2005). The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiology 139: 920-934. doi: 10.1104/pp.105.061382
  • Notredame C, Higgins DG, Heringa J (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302 (1): 205-217.
  • Paciorek T, Zazimalova E, Ruthardt N, Petrasek J, Stierhof YD et al. (2005). Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435: 1251-1256.
  • Pulido P, Perello C, Rodriguez-Concepcion M (2012). New insights into plant isoprenoid metabolism. Molecular Plant 5 (5): 964- 967. doi: 10.1093/mp/sss088
  • Seto Y, Yamaguchi S (2014). Strigolactone biosynthesis and perception. Current Opinion in Plant Biology 21: 1-6. doi:10.1016/j. pbi.2014.06.001
  • Shinohara N, Taylor C, Leyser O (2013). Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLOS Biology 1: e1001474. doi: 10.1371/journal.pbio.1001474
  • Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K et al. (2003). MAX4 and RMS1 are orthologous dioxygenaselike genes that regulate shoot branching in Arabidopsis and pea. Genes and Development 17: 1469-1474. doi: 10.1101/ gad.256603
  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP et al. (2015). SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27 (11): 3143-3159. doi:10.1105/ tpc.15.00562
  • Stirnberg P, van De Sande K, Leyser HMO (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 1131-1141.
  • Su Y, Xia S, Wang R, Xiao L (2017). Phytohormonal quantification based on biological principles. In: Li J, Li C, Smith SM (editors). Hormone Metabolism and Signaling in Plants. London, United Kingdom: Academic Press, pp. 431-470.
  • Takatsuka H, Umeda M (2014). Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of Experimental Botany 65 (10): 2633-2643. doi: 10.1093/jxb/ert485
  • Taylor TN, Taylor EL, Krings M (2009). Flowering Plants. Taylor TN, Taylor EL, Krings M (editors). Paleobotany London, United Kingdom: Academic Press, pp. 873-997.
  • Tumer TB, Yılmaz B, Ozleyen A, Kurt B, Tok TT et al (2018). GR24, a synthetic analog of Strigolactones, alleviates inflammation and promotes Nrf2 cytoprotective response: In vitro and in silico evidences. Computational Biology and Chemistry 76: 179-190.
  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195-200.
  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010). Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiology 51 (7): 1118-1126.
  • Yamada Y, Otake M, Furukawa T, Shindo M, Shimomura K et al. (2019). Effects of strigolactones on grain yield and seed development in rice. Journal of Plant Growth Regulation 38 (3): 753-764.
  • Xie X (2016). Structural diversity of strigolactones and their distribution in the plant kingdom. Journal of Pest Science 41 (4): 175-180.
  • Zhao B, Wu TT, Ma SS, Jiang DJ, Bie XM et al (2020). TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnology Journal 18 (2): 513-525.
APA Ünlü E, Gürel S, Aflaki F, Pazuki A, Sahin G, Gürel E (2020). Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). , 377 - 387. 10.3906/bot-2002-33
Chicago Ünlü Ercan Selçuk,Gürel Songül,Aflaki Fatemeh,Pazuki Arman,Sahin Gunce,Gürel Ekrem Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). (2020): 377 - 387. 10.3906/bot-2002-33
MLA Ünlü Ercan Selçuk,Gürel Songül,Aflaki Fatemeh,Pazuki Arman,Sahin Gunce,Gürel Ekrem Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). , 2020, ss.377 - 387. 10.3906/bot-2002-33
AMA Ünlü E,Gürel S,Aflaki F,Pazuki A,Sahin G,Gürel E Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). . 2020; 377 - 387. 10.3906/bot-2002-33
Vancouver Ünlü E,Gürel S,Aflaki F,Pazuki A,Sahin G,Gürel E Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). . 2020; 377 - 387. 10.3906/bot-2002-33
IEEE Ünlü E,Gürel S,Aflaki F,Pazuki A,Sahin G,Gürel E "Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.)." , ss.377 - 387, 2020. 10.3906/bot-2002-33
ISNAD Ünlü, Ercan Selçuk vd. "Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.)". (2020), 377-387. https://doi.org/10.3906/bot-2002-33
APA Ünlü E, Gürel S, Aflaki F, Pazuki A, Sahin G, Gürel E (2020). Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). Turkish Journal of Botany, 44(4), 377 - 387. 10.3906/bot-2002-33
Chicago Ünlü Ercan Selçuk,Gürel Songül,Aflaki Fatemeh,Pazuki Arman,Sahin Gunce,Gürel Ekrem Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). Turkish Journal of Botany 44, no.4 (2020): 377 - 387. 10.3906/bot-2002-33
MLA Ünlü Ercan Selçuk,Gürel Songül,Aflaki Fatemeh,Pazuki Arman,Sahin Gunce,Gürel Ekrem Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). Turkish Journal of Botany, vol.44, no.4, 2020, ss.377 - 387. 10.3906/bot-2002-33
AMA Ünlü E,Gürel S,Aflaki F,Pazuki A,Sahin G,Gürel E Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). Turkish Journal of Botany. 2020; 44(4): 377 - 387. 10.3906/bot-2002-33
Vancouver Ünlü E,Gürel S,Aflaki F,Pazuki A,Sahin G,Gürel E Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.). Turkish Journal of Botany. 2020; 44(4): 377 - 387. 10.3906/bot-2002-33
IEEE Ünlü E,Gürel S,Aflaki F,Pazuki A,Sahin G,Gürel E "Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.)." Turkish Journal of Botany, 44, ss.377 - 387, 2020. 10.3906/bot-2002-33
ISNAD Ünlü, Ercan Selçuk vd. "Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.)". Turkish Journal of Botany 44/4 (2020), 377-387. https://doi.org/10.3906/bot-2002-33