Yıl: 2020 Cilt: 44 Sayı: 4 Sayfa Aralığı: 410 - 426 Metin Dili: İngilizce DOI: 10.3906/bot-2002-13 İndeks Tarihi: 20-08-2020

Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways

Öz:
The rol oncogenes of Agrobacterium rhizogenes enhance the production of medicinally important compounds in plants andprovide a first barrier against the overproduction of reactive oxygen species during biotic and abiotic stress. This study was designed toevaluate the expression of genes involved in biosynthetic pathways and their impact on metabolic contents and environmental stresstolerance in regenerated Ajuga bracteosa Wall. ex Benth. After successful transformation, real-time quantitative PCR confirmed theincreased expression (1.94–6.59-fold) of HMGR, HDS, FDS, PAL, and TTG1 genes in transgenic lines. Furthermore, GC-MS coupledwith principal component analysis revealed diverse concentrations of 97 metabolites in A. bracteosa. Transgenic lines showed greatersurvival under multiple stresses. This was revealed by significant chlorophyll content (8.13–21 µmoles/m2), higher quantum efficiencyof PSII ($F_{v/;}F_m$), and the performance index ($PI_{abs}$) value. Similarly, catalase and peroxidase enzyme activities were enhanced duringextreme drought (300–400 mM mannitol) and salinity (150–200 mM NaCl) conditions, compared to untransformed control. Wildtype control plant leaves were completely necrotized by Aspergillus fumigatus (FCBP 66) and Fusarium solani (FCBP 0291), whereastransformed leaves had improved antifungal resistance. In conclusion, our data suggest that rolABC genes have a significant impact onthe synthesis of metabolites involved in enhancing multistress tolerance in A. bracteosa.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aebi H (1984). Catalase in vitro. Methods in Enzymology 105: 121- 126. doi: 10.1016/S0076-6879(84)05016-3
  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A et al. (2012). Role of transgenic plants in agriculture and biopharming. Biotechnology Advances 30 (3): 524-540. doi: 10.1016/j. biotechadv.2011.09.006
  • Airoldi CA, Hearn TJ, Brockington SF (2019). TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation. Nature Plants 5 (11): 1145-1153. doi: 10.1038/ s41477-019-0544-3
  • Ali HEM, Ismail GSM (2014). Tomato fruit quality as influenced by salinity and nitric oxide. Turkish Journal of Botany 38 (1): 122- 129. doi: 10.3906/bot-1210-44
  • Ali H, Khan MA, Kayani WK, Khan T, Khan RS (2018). Thidiazuron regulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosa. Industrial Crops and Products 121: 418-427. doi: 10.1016/j.indcrop.2018.05.043
  • Al-Hatmi AMS, De Hoog GS, Meis JF (2019). Multiresistant Fusarium pathogens on plants and humans: solutions in (from) the antifungal pipeline? Infection and Drug Resistance 12: 3727-3737. doi: 10.2147/IDR.S180912
  • Arndt SK, Irawan A, Sanders GJ (2015). Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves. Physiologia Plantarum 155 (4): 355-368. doi: 10.1111/ppl.12380
  • Arshad W, Ihsan-ul-Haq, Waheed MT, Mysore KS, Mirza B (2014). Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens. PLoS One 9 (5): e96979. doi: 10.1371/journal.pone.0096979
  • Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89-113. doi: 10.1146/annurev.arplant.59.032607.092759
  • Bayat H, Moghadam AN (2019). Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiologiae Plantarum 41 (9): 149. doi: 10.1007/s11738-019-2942-6
  • Bettini PP, Marvasi M, Fani F, Lazzara L, Cosi E et al. (2016a). Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants. Journal of Plant Physiology 204: 27-35. doi: 10.1016/j.jplph.2016.07.010
  • Bettini PP, Santangelo E, Baraldi R, Rapparini F, Mosconi P et al. (20016b). Agrobacterium rhizogenes rolA gene promotes tolerance to Fusarium oxysporum f. sp. lycopersici in transgenic tomato plants (Solanum lycopersicum L.). Journal of Plant Biochemistry and Biotechnology 25: 225-233. doi: 10.1007/ s13562-015-0328-4
  • Bettini PP, Lazzara L, Massi L, Fani F, Mauro ML (2020). Effect of farred light exposure on photosynthesis and photoprotection in tomato plants transgenic for the Agrobacterium rhizogenes rolB gene. Journal of Plant Physiology 245: 153095. doi: 10.1016/j. jplph.2019.153095
  • Bulgakov VP (2008). Functions of rol genes in plant secondary metabolism. Biotechnology Advances 26 (4): 318-324. doi: 10.1016/j.biotechadv.2008.03.001
  • Bulgakov VP, Gorpenchenko TY, Veremeichik GN, Shkryl YN, Tchernoded GK et al. (2012). The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiology 158 (3): 1371-1381. doi: 10.1104/pp.111.191494
  • Bulgakov VP, Veremeichik GN, Grigorchuk VP, Rybin VG, Shkryl YN (2016). The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors. Plant Physiology and Biochemistry 102: 70-79. doi: 10.1016/j.plaphy.2016.02.015
  • Chance B, Maehly A (1955). Assay of catalases and peroxidases. Methods in Enzymology 2: 764-775. doi: 10.1016/S0076- 6879(55)02300-8
  • Chen DH, Liu CJ, Ye HC, Li GF, Liu BY et al. (1999). Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell and Tissue Organ Culture 57 (3): 157-162. doi: 10.1023/A:1006326818509
  • Chowdhury S, Basu A, Kundu S (2017). Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Frontiers in Plant Science 8: 410. doi: 10.3389/fpls.2017.00410
  • Czarnocka W, Karpiński S (2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biology and Medicine 122: 4-20. doi: 10.1016/j.freeradbiomed.2018.01.011
  • Dilshad E, Cusido RM, Estrada KR, Bonfill M, Mirza B (2015). Genetic transformation of Artemisia carvifolia Buch with rol genes enhances artemisinin accumulation. PLoS One 10 (10): e0140266. doi: 10.1371/journal.pone.0140266
  • Dilshad E, Zafar S, Ismail H, Waheed MT, Cusido RM et al. (2016). Effect of rol genes on polyphenols biosynthesis in Artemisia annua and their effect on antioxidant and cytotoxic potential of the plant. Applied Biochemistry and Biotechnology 179 (8): 1456-1468. doi: 10.1007/s12010-016-2077-9
  • Dubrovina AS, Manyakhin AY, Zhuravlev YN, Kiselev KV (2010). Resveratrol content and expression of phenylalanine ammonialyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Applied Microbiology and Biotechnology 88 (3): 727-736. doi: 10.1007/s00253-010-2792-z
  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198 (1): 16-32. doi: 10.1111/nph.12145
  • Ganaie HA, Ali MN, Ganai BA (2016). GC–MS analysis and evaluation of mutagenic and antimutagenic activity of ethyl acetate extract of Ajuga bracteosa wall ex. benth: an endemic medicinal plant of Kashmir himalaya, India. Journal of Clinical Toxicology 6: 0495-2161. doi: 10.4172/2161-0495.1000288
  • Ganaie HA, Ali MN, Ganai BA, Meraj M, Ahmad M (2017). Antibacterial activity of 14, 15-dihydroajugapitin and 8-o-acetylharpagide isolated from Ajuga bracteosa Wall ex. Benth against human pathogenic bacteria. Microbial Pathogenesis 103: 114-118. doi: 10.1016/j.micpath.2016.12.017
  • García-Caparrós P, Romero MJ, Llanderal A, Cermeño P, Lao MT et al. (2019). Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six Lamiaceae species. Water 11 (3): 573. doi: 10.3390/w11030573
  • Hafeez K, Andleeb S, Ghousa T, Rozina GM, Naseer A et al. (2017). Phytochemical screening, alpha-glucosidase inhibition, antibacterial and antioxidant potential of Ajuga bracteosa extracts. Current Pharmaceutical Biotechnology 18 (4): 336- 342. doi: 10.2174/1389201018666170313095033
  • Hasheminasab H, Farshadfar E, Varvani H (2014). Application of physiological traits related to plant water status for predicting yield stability in wheat under drought stress condition. Annual Research and Review in Biology 4 (5): 778-789. doi: 10.9734/ ARRB/2014/6689
  • Hsieh WT, Liu YT, Lin WC (2011). Anti-inflammatory properties of Ajuga bracteosa in vivo and in vitro study and their effects on mouse model of liver fibrosis. Journal of Ethnopharmacology 135 (1):116-125. doi: 10.1016/j.jep.2011.02.031
  • Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE et al. (2018). Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tissue and Organ Culture 132 (2): 239- 265. doi: 10.1007/s11240-017-1332-2
  • Isah T (2019). Stress and defense responses in plant secondary metabolites production. Biological Research 52 (1): 39. doi: 10.1186/s40659-019-0246-3
  • Jolayemi OL, Opabode JT (2018). Responses of cassava (Manihot esculenta Crantz) varieties to in vitro mannitol-induced drought stress. Journal of Crop Improvement 32 (4): 566-578. doi: 10.1080/15427528.2018.1471431
  • Kayani WK, Palazòn J, Cusidò RM, Mirza B (2016a). The effect of rol genes on phytoecdysteroid biosynthesis in Ajuga bracteosa differs between transgenic plants and hairy roots. RSC Advances 6 (27): 22700-22708. doi: 10.1039/C6RA00250A
  • Kayani WK, Fattahi M, Palazòn J, Cusidò RM, Mirza B (2016b). Comprehensive screening of influential factors in the Agrobacterium tumefaciens-mediated transformation of the Himalayan elixir: Ajuga bracteosa Wall. ex. Benth. Journal of Applied Research on Medicinal and Aromatic Plants 3 (4): 151-159. doi: 10.1016/j.jarmap.2016.03.002
  • Kayani WK, Dilshad E, Ahmed T, Ismail H, Mirza B (2016c). Evaluation of Ajuga bracteosa for antioxidant, antiinflammatory, analgesic, antidepressant and anticoagulant activities. BMC Complementary and Alternative Medicine 16 (1): 375. doi: 10.1186/s12906-016-1363-y
  • Kayani WK, Palazòn J, Cusidò RM, Mirza B (2017). Effect of pRi T-DNA genes and elicitation on morphology and phytoecdysteroid biosynthesis in Ajuga bracteosa hairy roots. RSC Advances 7 (76): 47945-47953. doi: 10.1039/C7RA06399G
  • Kiani BH, Suberu J, Barker GC, Mirza B (2014). Development of efficient miniprep transformation methods for Artemisia annua using Agrobacterium tumefaciens and Agrobacterium rhizogenes. In Vitro Cellular and Developmental Biology-Plant 50 (5): 590-600. doi: 10.1007/s11627-014-9607-3
  • Kiani BH, Ullah N, Haq IU, Mirza B (2019). Transgenic Artemisia dubia WALL showed altered phytochemistry and pharmacology. Arabian Journal of Chemistry 12 (8): 2644- 2654. doi: 10.1016/j.arabjc.2015.04.020
  • Kilimann KV, Hartmann C, Delgado A, Vogel RF, Gänzle MG (2006). Combined high pressure and temperature induced lethal and sublethal injury of Lactococcus lactis-Application of multivariate statistical analysis. International Journal of Food Microbiology 109 (1-2): 25-33. doi: 10.1016/j. ijfoodmicro.2006.01.006
  • Li Y, Zhang T, Zhang Z, He K (2019). The physiological and biochemical photosynthetic properties of Lycium ruthenicum Murr in response to salinity and drought. Scientia Horticulturae 256: 108530. doi: 10.1016/j.scienta.2019.05.057
  • Luz AC, Pretti IR, Batitucci M (2016). Comparison of RNA extraction methods for Passiflora edulis sims leaves. Revista Brasileira de Fruticultura 38 (1): 226-232. doi: 10.1590/0100-2945-278/15
  • Maghsoudi K, Emam Y, Ashraf M (2015). Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany 39 (4): 625-634. doi 10.3906/bot-1407-11
  • Manuka R, Karle SB, Kumar K (2019). OsWNK9 mitigates salt and drought stress effects through induced antioxidant systems in Arabidopsis. Plant Physiology Reports 24 (2): 168-181. doi: 10.1007/s40502-019-00448-w
  • Mittler R (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science 11 (1): 15-19. doi: 10.1016/j.tplants.2005.11.002
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15 (3): 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
  • Nayyar H, Gupta D (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environmental and Experimental Botany 58 (1-3): 106-113. doi: 10.1016/j.envexpbot.2005.06.021
  • Netto AT, Campostrini E, de Oliveira JG, Bressan-Smith RE (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104 (2): 199-209. doi: 10.1016/j.scienta.2004.08.013
  • Niazian M, Sadat-Noori SA, Tohidfar M, Galuszka P, Mortazavian SM (2019). Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Industrial Crops and Products 132: 29-40. doi: 10.1016/j.indcrop.2019.02.005
  • Özçelik B, Kartal M, Orhan I (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology 49 (4): 396-402. doi: 10.3109/13880209.2010.519390
  • Park HY, Kim DH, Sivanesan I (2017). Micropropagation of Ajuga species: a mini review. Biotechnology Letters 39: 1291-1298. doi: 10.1007/s10529-017-2376-4
  • Pavlova OA, Matveyeva TV, Lutova LA (2014). rol-Genes of Agrobacterium rhizogenes. Russian Journal of Genetics: Applied Research 4: 137-145. doi: 10.1134/S2079059714020063
  • Sánchez‐Maldonado AF, Schieber A, Gänzle MG (2016). Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects. Journal of Applied Microbiology 120 (4): 955-965. doi: 10.1111/jam.13056
  • Shahid MA, Balal RM, Pervez MA, Abbas T, Aqeel MA et al. (2014). Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Turkish Journal of Botany 38: 914-26. doi: 10.3906/bot-1312-13
  • Shavrukov Y (2013). Salt stress or salt shock: which genes are we studying? Journal of Experimental Botany 64 (1): 119-127. doi: 10.1093/jxb/ers316
  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences 16 (6): 13561-13578. doi: 10.3390/ijms160613561
  • Tanaka N, Matsumoto T (1993). Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Reports 13 (2): 87-90. doi: 10.1007/BF00235296
  • Waseem M, Li Z (2019). Dissecting the role of a Basic Helix-Loop-Helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Frontiers in Plant Science 10: 734. doi: 10.3389/fpls.2019.00734
  • Živčák M, Brestič M, Olšovská K, Slamka P (2008). Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant, Soil and Environment 54 (4): 133-139. doi: 10.17221/392-PSE
APA Rubnawaz S, Kayani W, Mahmood R, Mirza B (2020). Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. , 410 - 426. 10.3906/bot-2002-13
Chicago Rubnawaz Samina,Kayani Waqas Khan,Mahmood Rashid,Mirza Bushra Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. (2020): 410 - 426. 10.3906/bot-2002-13
MLA Rubnawaz Samina,Kayani Waqas Khan,Mahmood Rashid,Mirza Bushra Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. , 2020, ss.410 - 426. 10.3906/bot-2002-13
AMA Rubnawaz S,Kayani W,Mahmood R,Mirza B Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. . 2020; 410 - 426. 10.3906/bot-2002-13
Vancouver Rubnawaz S,Kayani W,Mahmood R,Mirza B Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. . 2020; 410 - 426. 10.3906/bot-2002-13
IEEE Rubnawaz S,Kayani W,Mahmood R,Mirza B "Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways." , ss.410 - 426, 2020. 10.3906/bot-2002-13
ISNAD Rubnawaz, Samina vd. "Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways". (2020), 410-426. https://doi.org/10.3906/bot-2002-13
APA Rubnawaz S, Kayani W, Mahmood R, Mirza B (2020). Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. Turkish Journal of Botany, 44(4), 410 - 426. 10.3906/bot-2002-13
Chicago Rubnawaz Samina,Kayani Waqas Khan,Mahmood Rashid,Mirza Bushra Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. Turkish Journal of Botany 44, no.4 (2020): 410 - 426. 10.3906/bot-2002-13
MLA Rubnawaz Samina,Kayani Waqas Khan,Mahmood Rashid,Mirza Bushra Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. Turkish Journal of Botany, vol.44, no.4, 2020, ss.410 - 426. 10.3906/bot-2002-13
AMA Rubnawaz S,Kayani W,Mahmood R,Mirza B Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. Turkish Journal of Botany. 2020; 44(4): 410 - 426. 10.3906/bot-2002-13
Vancouver Rubnawaz S,Kayani W,Mahmood R,Mirza B Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways. Turkish Journal of Botany. 2020; 44(4): 410 - 426. 10.3906/bot-2002-13
IEEE Rubnawaz S,Kayani W,Mahmood R,Mirza B "Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways." Turkish Journal of Botany, 44, ss.410 - 426, 2020. 10.3906/bot-2002-13
ISNAD Rubnawaz, Samina vd. "Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways". Turkish Journal of Botany 44/4 (2020), 410-426. https://doi.org/10.3906/bot-2002-13