Yıl: 2020 Cilt: 33 Sayı: 2 Sayfa Aralığı: 133 - 140 Metin Dili: İngilizce DOI: 10.5152/TurkJOrthod.2020.18099 İndeks Tarihi: 21-10-2020

Use of Laser Systems in Orthodontics

Öz:
Laser systems have been used in the practice of dentistry for >35 years. Laser systems have so many advantages, such as increasepatient cooperation, reduce the duration of treatment time, and help the orthodontists to enhance the design of a patient’s smile toimprove treatment efficacy, and the success of orthodontic treatments can also be improved by diminishing the orthodontic pain andthe discomfort of the patients. Laser systems also have some disadvantages, such as cost, large space requirements for some types,and high-risk potential for physician and patient if not used at the appropriate wavelength and power density, that is why beforeincorporating lasers into clinical practice, the physician must fully understand the basic science, safety protocol, and risks associatedwith them. Lasers have many applications in orthodontics, including accelerating tooth movement, bonding and debonding processes, pain reduction, bone regeneration, etching procedures, increase mini-implant stability, soft tissue procedures (gingivectomy,frenectomy, operculectomy, papilla flattening, uncovering temporary anchorage devices, ablation of aphthous ulcerations, and exposure of impacted teeth), fiberotomy, scanning systems, and welding procedures. In reviewing the literature on the use of laser inorthodontics, many studies have been conducted. The purpose of the present study was to give information about the use of laser inthe field of orthodontics, the effects of laser during the postoperative period, and its advantages and disadvantages and to providegeneral information about the requirements to be considered during the use of laser.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Coluzzi DJ. Fundamentals of dental lasers: science and instruments. Dental Clinics. 2004; 48: 751-70. [CrossRef]
  • 2. Frentzen M, Koort H. Lasers in dentistry: new possibilities with advancing laser technology? Int Dental J 1990; 40:3 23-32.
  • 3. Coluzzi DJ. An Overview of Lasers in Dentistry. 2011.
  • 4. Perveen A, Molardi C, Fornaini C. Applications of laser welding in dentistry: a state-of-the-art review. Micromachines (Basel) 2018; 9: pii: E209. doi: 10.3390/mi9050209. [CrossRef]
  • 5. Genc G, Kocadereli I, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci 2013; 28: 41-7. [CrossRef]
  • 6. Wigdor H, Abt E, Ashrafi S, Walsh JT. The effect of lasers on dental hard tissues. J Am Dent Assoc 1993; 124: 65-70. [CrossRef]
  • 7. Romanos GE. Clinical applications of the Nd: YAG laser in oral soft tissue surgery and periodontology. J Clin Laser Med Surg 1994; 12: 103-8. [CrossRef]
  • 8. Guram G, Reddy RK, Dharamsi AM, Ismail PMS, Mishra S, Prakashkumar MD. Evaluation of low-level laser therapy on orthodontic tooth movement: a randomized control study. Contemp Clin Dent 2018; 9: 105-9.
  • 9. Alazzawi MMJ, Husein A, Alam MK, Hassan R, Shaari R, Azlina A, et al. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats. Prog Orthod 2018; 19: 10. doi: 10.1186/s40510-018- 0208-2. [CrossRef]
  • 10. AlSayed Hasan MMA, Sultan K, Hamadah O. Low-level laser therapy effectiveness in accelerating orthodontic tooth movement: A randomized controlled clinical trial. Angle Orthod 2016; 87: 499-504. [CrossRef]
  • 11. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low‐ energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 2008; 11: 143-55. [CrossRef]
  • 12. Long H, Pyakurel U, Wang Y, Liao L, Zhou Y, Lai W. Interventions for accelerating orthodontic tooth movement: a systematic review. Angle Orthod 2012; 83: 164-71. [CrossRef]
  • 13. Lim H-M, Lew KK, Tay DK. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop 1995; 108: 614-22. [CrossRef ]
  • 14. Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, et al. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha (v) beta (3) integrin in rats. Eur J Orthod 2010; 32: 131-9. [CrossRef]
  • 15. Marini I, Bartolucci ML, Bortolotti F, Innocenti G, Gatto MR, Bonetti GA. The effect of diode superpulsed low-level laser therapy on experimental orthodontic pain caused by elastomeric separators: a randomized controlled clinical trial. Lasers Med Sci 2015; 30: 35-41. [CrossRef]
  • 16. Wu S, Chen Y, Zhang J, Chen W, Shao S, Shen H, et al. Effect of low-level laser therapy on tooth-related pain and somatosensory function evoked by orthodontic treatment. Int J Oral Sci 2018; 10: 22. doi: 10.1038/s41368-018-0023-0. [CrossRef]
  • 17. Qamruddin I, Alam MK, Abdullah H, Kamran MA, Jawaid N, Mahroof V. Effects of single-dose, low-level laser therapy on pain associated with the initial stage of fixed orthodontic treatment: A randomized clinical trial. Korean J Orthod 2018; 48: 90-7. [CrossRef]
  • 18. Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R. The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci 2014; 29: 559-64. [CrossRef]
  • 19. Cepera F, Torres FC, Scanavini MA, Paranhos LR, Capelozza Filho L, Cardoso MA, et al. Effect of a low-level laser on bone regeneration after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 2012;141: 444-50. [CrossRef]
  • 20. Moawad SG, Bouserhal J, Al-Munajed MK. Assessment of the efficiency of Erbium-YAG laser as an assistant method to rapid maxillary expansion: An in vivo study. Int Orthod 2016; 14: 462-75. [CrossRef]
  • 21. Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM. Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e38-46. [CrossRef]
  • 22. Santiago VC, Piram A, Fuziy A. Effect of soft laser in bone repair after expansion of the midpalatal suture in dogs. Am J Orthod Dentofacial Orthop 2012; 142: 615-24. [CrossRef]
  • 23. Ribeiro GH, Minamisako MC, Rath IBdS, Santos AMB, Simões A, Pereira KCR, et al. Osteoradionecrosis of the jaws: case series treated with adjuvant low-level laser therapy and antimicrobial photodynamic therapy. J Appl Oral Sci 2018; 26: doi: 10.1590/1678-7757- 2017-0172. [CrossRef]
  • 24. Gurler G, Gursoy B. Investigation of effects of low level laser therapy in distraction osteogenesis. J Stomatol Oral Maxillofac Surg 2018; 119: 469-76. [CrossRef]
  • 25. Okşayan R, Sökücü O, Üçüncü N. The effects of low-level laser therapy on condylar growth with a mandibular advancement appliance in rats. Photomed Laser Surg 2015; 33: 252-7. [CrossRef]
  • 26. Abtahi M, Poosti M, Saghravanian N, Sadeghi K, Shafaee H. The effect of low level laser on condylar growth during mandibular advancement in rabbits. Head Face Med 2012; 8: 4. doi: 10.1186/1746- 160X-8-4. [CrossRef]
  • 27. Oztoprak MO, Nalbantgil D, Erdem AS, Tozlu M, Arun T. Debonding of ceramic brackets by a new scanning laser method. Am J Orthod Dentofacial Orthop 2010; 138: 195-200. [CrossRef]
  • 28. Sinaee N, Salahi S, Sheikhi M. Evaluation of the effect of diode laser for debonding ceramic brackets on nanomechanical properties of enamel. Dent Res J (Isfahan) 2018; 15: 354-60. [CrossRef]
  • 29. Nalbantgil D, Tozlu M, Oztoprak MO. Pulpal thermal changes following Er-YAG laser debonding of ceramic brackets. ScientificWorldJournal 2014; 2014: doi: 10.1155/2014/912429. [CrossRef]
  • 30. Dostálová Tj, Remeš M, Jelínková H, Šulc J, Němec M, Vyhlídal D, editors. Er: YAG laser metal and ceramic bracket debonding. Lasers in Dentistry XXII; 2016: International Society for Optics and Photonics. [CrossRef]
  • 31. Mundethu AR, Gutknecht N, Franzen R. Rapid debonding of polycrystalline ceramic orthodontic brackets with an Er: YAG laser: an in vitro study. Lasers Med Sci 2014; 29: 1551-6. [CrossRef]
  • 32. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955; 34: 849- 53. [CrossRef]
  • 33. Corpas-Pastor L, Villalba Moreno J, de Dios Lopez-Gonzalez Garrido J, Pedraza Muriel V, Moore K, Elias A. Comparing the tensile strength of brackets adhered to laser-etched enamel vs. acid-etched enamel. J Am Dent Assoc 1997; 128: 732-7. [CrossRef]
  • 34. Oskoee PA, Kachoei M, Rikhtegaran S, Fathalizadeh F, Navimipour EJ. Effect of surface treatment with sandblasting and Er, Cr: YSGG laser on bonding of stainless steel orthodontic brackets to silver amalgam. Med Oral Patol Oral Cir Bucal 2012; 17: e292-6. [CrossRef]
  • 35. Zarif Najafi H, Mousavi M, Nouri N, Torkan S. Evaluation of the effect of different surface conditioning methods on shear bond strength of metal brackets bonded to aged composite restorations. Int Orthod 2019; 17: 80-8. [CrossRef]
  • 36. Cecchini RCM, Zezell DM, de Oliveira E, de Freitas PM, Eduardo CdP. Effect of Er: YAG laser on enamel acid resistance: Morphlogical and atomic spectrometry analysis. Lasers Surg Med 2005; 37: 366-72. [CrossRef]
  • 37. Lasmar M, Reher V, Lalloo R, Reher P. Enamel demineralization and bracket bond strength when etching with acid and/or Er: YAG laser. Aust Dent J 2012; 57: 190-5. [CrossRef]
  • 38. Çokakoğlu S, Nalçacı R, Üşümez S, Malkoç S. Effects of different combinations of Er: YAG laser-adhesives on enamel demineralization and bracket bond strength. Photomed Laser Surg 2016; 34: 164-70. [CrossRef]
  • 39. Sallam RA, Arnout EA. Effect of Er: YAG laser etching on shear bond strength of orthodontic bracket. Saudi Med J 2018; 39: 922-7. [CrossRef]
  • 40. Türköz Ç, Ulusoy Ç. Evaluation of different enamel conditioning techniques for orthodontic bonding. Korean J Orthod 2012; 42: 32- 8. [CrossRef]
  • 41. Das U, Prashanth S. A comparative study to evaluate the effect of fluoride releasing sealant cured by visible light, argon laers, and light emitting diode curing units: An in vitro study. J Indian Soc Pedod Prev Dent 2009; 27: 139-44. [CrossRef]
  • 42. Matini NS, Motabar M. Current Status for Laser-Assisted Orthodontics in the Application of Ceramic Brackets. J Lasers Med Sci 2018; 9.
  • 43. Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofacial Orthop 2007; 131(4 Suppl): S43-51. [CrossRef]
  • 44. Pinto MR, dos Santos RL, Pithon MM, de Souza Araújo MT, Braga JPV, Nojima LI. Influence of low-intensity laser therapy on the stability of orthodontic mini-implants: a study in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115: e26-30. [CrossRef]
  • 45. Abohabib AM, Fayed MM, Labib AH. Effects of low-intensity laser therapy on the stability of orthodontic mini-implants: a randomised controlled clinical trial. J Orthod 2018; 45: 149-56. [CrossRef]
  • 46. Seifi M, Matini NS. Laser surgery of soft tissue in orthodontics: Review of the clinical trials. J Lasers Med Sci 2017; 8(Suppl 1): S1-6. [CrossRef]
  • 47. Kulkarni RB, Misal A, Mishra R. Soft tissue diode laser in orthodontics. Int J Appl Dent Sci 2017; 3: 91-4.
  • 48. To TN, Rabie AB, Wong RW, McGrath CP. The adjunct effectiveness of diode laser gingivectomy in maintaining periodontal health during orthodontic treatment. Angle Orthod 2013; 83: 43-7. [CrossRef]
  • 49. Edwards JG. A study of the periodontium during orthodontic rotation of teeth. Am J Orthod 1968; 54: 441-61. [CrossRef]
  • 50. Miresmæili AF, Mollabashi V, Gholami L, Farhadian M, Rezaei-Soufi L, Javanshir B, et al. Comparison of conventional and laser-aided fiberotomy in relapse tendency of rotated tooth: A randomized controlled clinical trial. Int Orthod 2019; 17: 103-13. [CrossRef]
  • 51. Kim SJ, Paek JH, Park KH, Kang SG, Park YG. Laser-aided circumferential supracrestal fiberotomy and low-level laser therapy effects on relapse of rotated teeth in beagles. Angle Orthod 2010; 80: 385-90. [CrossRef]
  • 52. Meng M, Yang M, Lv C, Yang Q, Yang Z, Chen S. Effect of low-level laser therapy on relapse of rotated teeth: A systematic review of human and animal study. Photomed Laser Surg 2017; 35: 3-11. [CrossRef]
  • 53. Erten O, Yılmaz BN. Three-Dimensional Imaging in Orthodontics. Turk J Orthod 2018; 31: 86-94. [CrossRef]
  • 54. Sabol JV, Grant GT, Liacouras P, Rouse S. Digital image capture and rapid prototyping of the maxillofacial defect. J Prosthodont 2011; 20: 310-4. [CrossRef]
  • 55. Cheah CM, Chua CK, Tan KH, Teo CK. Integration of laser surface digitizing with CAD/CAM techniques for developing facial prostheses. Part 1: design and fabrication of prosthesis replicas. Int J Prosthodont 2003; 16: 435-41.
  • 56. Ciocca L, Mingucci R, Gassino G, Scotti R. CAD/CAM ear model and virtual construction of the mold. J Prosthet Dent 2007; 98: 339-43. [CrossRef]
  • 57. Jablonski RY, Osnes CA, Khambay BS, Nattress BR, Keeling AJ Accuracy of capturing oncology facial defects with multimodal image fusion versus laser scanning. J Prosthet Dent 2019; 122: 333-8. [CrossRef]
  • 58. Hurt AJ. Digital technology in the orthodontic laboratory. Am J Orthod Dentofacial Orthop 2012; 141: 245-7. [CrossRef]
  • 59. Watanabe E, Stigall G, Elshahawy W, Watanabe I. Deflection load characteristics of laser-welded orthodontic wires. Angle Orthod 2011; 82: 698-702. [CrossRef]
  • 60. Fornaini C, Bertrand C, Rocca J, Mahler P, Bonanini M, Vescovi P, et al. Intra-oral laser welding: an in vitro evaluation of thermal increase. Lasers Med Sci 2010; 25: 473-7. [CrossRef]
APA Kurt demirsoy K, KURT G (2020). Use of Laser Systems in Orthodontics. , 133 - 140. 10.5152/TurkJOrthod.2020.18099
Chicago Kurt demirsoy Kevser,KURT GOKMEN Use of Laser Systems in Orthodontics. (2020): 133 - 140. 10.5152/TurkJOrthod.2020.18099
MLA Kurt demirsoy Kevser,KURT GOKMEN Use of Laser Systems in Orthodontics. , 2020, ss.133 - 140. 10.5152/TurkJOrthod.2020.18099
AMA Kurt demirsoy K,KURT G Use of Laser Systems in Orthodontics. . 2020; 133 - 140. 10.5152/TurkJOrthod.2020.18099
Vancouver Kurt demirsoy K,KURT G Use of Laser Systems in Orthodontics. . 2020; 133 - 140. 10.5152/TurkJOrthod.2020.18099
IEEE Kurt demirsoy K,KURT G "Use of Laser Systems in Orthodontics." , ss.133 - 140, 2020. 10.5152/TurkJOrthod.2020.18099
ISNAD Kurt demirsoy, Kevser - KURT, GOKMEN. "Use of Laser Systems in Orthodontics". (2020), 133-140. https://doi.org/10.5152/TurkJOrthod.2020.18099
APA Kurt demirsoy K, KURT G (2020). Use of Laser Systems in Orthodontics. Turkish Journal of Orthodontics, 33(2), 133 - 140. 10.5152/TurkJOrthod.2020.18099
Chicago Kurt demirsoy Kevser,KURT GOKMEN Use of Laser Systems in Orthodontics. Turkish Journal of Orthodontics 33, no.2 (2020): 133 - 140. 10.5152/TurkJOrthod.2020.18099
MLA Kurt demirsoy Kevser,KURT GOKMEN Use of Laser Systems in Orthodontics. Turkish Journal of Orthodontics, vol.33, no.2, 2020, ss.133 - 140. 10.5152/TurkJOrthod.2020.18099
AMA Kurt demirsoy K,KURT G Use of Laser Systems in Orthodontics. Turkish Journal of Orthodontics. 2020; 33(2): 133 - 140. 10.5152/TurkJOrthod.2020.18099
Vancouver Kurt demirsoy K,KURT G Use of Laser Systems in Orthodontics. Turkish Journal of Orthodontics. 2020; 33(2): 133 - 140. 10.5152/TurkJOrthod.2020.18099
IEEE Kurt demirsoy K,KURT G "Use of Laser Systems in Orthodontics." Turkish Journal of Orthodontics, 33, ss.133 - 140, 2020. 10.5152/TurkJOrthod.2020.18099
ISNAD Kurt demirsoy, Kevser - KURT, GOKMEN. "Use of Laser Systems in Orthodontics". Turkish Journal of Orthodontics 33/2 (2020), 133-140. https://doi.org/10.5152/TurkJOrthod.2020.18099