Yıl: 2020 Cilt: 33 Sayı: 3 Sayfa Aralığı: 150 - 156 Metin Dili: İngilizce DOI: 10.5152/TurkJOrthod.2020.19109 İndeks Tarihi: 21-10-2020

Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study

Öz:
Objective: The objective of the study was to evaluate the stress pattern in cortical and cancellous bones, periodontal ligament, and in the implant itself when a mini-implant (MI) is inserted in the inter-radicular space between mandibular first molar and second pre-molar at various angulations and different retraction forces.Methods: Finite element study was conducted with MI insertion at 30°, 45°, 60°, 75°, and 90° angulations in the mandibular posterior region (between second premolar and first molar). At these angulations, horizontal forces of 150, 200, and 250 g were applied to the middle of the MI head. von Mises stress values were then evaluated using the ANSYS software.Results: Highest von Mises stress values were detected in the MI itself, followed by cortical bone, cancellous bone, and periodontal ligament. The von Mises stress values in cortical bone were highest at 30° angulation and lowest at 90° angulation. In the cancellous bone, the stress value was found to be maximum at 90°. The von Mises stress values in the MI were lowest at 90°. In all four structures, as the load increased from 150 to 250 g, the von Mises stress values increased.Conclusion: The von Mises stress values in the cortical bone, MI, and periodontal ligament were found to be lowest at 90°. Placement of the MI at 90° appears to be an ideal angulation when applied with a horizontal load. Force range used is within clinically recom-mended levels; however, the increase in load causes an increase in the stress values.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Roberts WE, Helm FR, Marshall KJ, Gongloff RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod 1989; 59: 247-56. [Crossref]
  • 2. Cope JB. Temporary anchorage devices in orthodontics: A paradigm shift. Semin Orthod 2005; 11: 3-9. [Crossref]
  • 3. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 2007; 131: 9-15. [Crossref]
  • 4. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006; 130: 18-25. [Crossref]
  • 5. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004; 19: 100-6.
  • 6. Jiang L, Kong L, Li T, Gu Z, Hou R, Duan Y. Optimal selections of orthodontic mini-implant diameter and length by biomechanical consideration: A three-dimensional finite element analysis. Adv Eng Software 2009; 40: 1124-30. [Crossref]
  • 7. Wu T, Kuang S, Wu C. Factors associated with the stability of mini-implants for orthodontic anchorage: A study of 414 samples in Taiwan. J Oral Maxillofac Surg 2009; 67: 1595-9. [Crossref]
  • 8. Lai TT, Chen M. Factors affecting the clinical success of orthodontic anchorage: Experience with 266 temporary anchorage devices. J Dent Sci 2014; 9: 49-55. [Crossref]
  • 9. Lin TS, Tsai FD, Chen CY, Lin LW. Factorial analysis of variables affecting bone stress adjacent to the orthodontic anchorage mini-implant with finite element analysis. Am J Orthod Dentofacial Orthop 2013; 143: 182-9. [Crossref]
  • 10. Buchter A, Wiechmann D, Gaertner C, Hendrik M, Vogeler M, Wiesmann HP et al. Load related bone modelling at the interface of orthodontic microimplants. Clin Oral Implants Res 2006; 17: 714-22. [Crossref]
  • 11. Wiechmann D, Meyer U, Buchter A. Success rate of mini and micro-implants used for orthodontic anchorage: a prospective clinical study. Clin Oral Implants Res 2007; 18: 263-7. [Crossref]
  • 12. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003; 124: 373-8. [Crossref]
  • 13. Motoyashi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 2007; 22: 779-84.
  • 14. Liu TC, Chang CH, Wong TY, Liu JK. Finite element analysis of miniscrew implants used for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2012; 141: 468-76. [Crossref]
  • 15. Wilmes B, Su YY, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod 2008; 78: 1065- 70. [Crossref]
  • 16. Zhang Y, Zhang D, Feng CJ. A three-dimensional finite element analysis for the biomechanical characteristics of orthodontic anchorage micro-implant. Shanghai Kou Qiang Yi Xue 2005; 14: 281-3.
  • 17. Shalak R. Biomechanical considerations in osseointegrated prosthesis. J Prosthet Dent 1983; 49: 843-8. [Crossref]
  • 18. Middleton J, Jones M, Wilson A. The role of the periodontal ligament in bone modeling: the initial development of a time dependent finite element model. Am J Orthod Dentofacial Orthop 1996; 109: 155-62. [Crossref]
  • 19. Nelson SJ, Ash MM. Wheeler's dental anatomy, physiology and occlusion. 9th ed. St. Louis: Saunders Elsevier; 2010. p.13.
  • 20. Newman MG, Takei HH, Carranza FA. Carrranza's Clinical Periodontology. 9th ed. St. Louis: Saunders; 2002. p.54.
  • 21. Motoyashi M, Ueno S, Okazaki, N, Shimizu N. Bone stress for a mini-implant close to the roots of adjacent teeth.- A 3D Finite element analysis. Int J Oral Maxillofac Surg 2009; 38: 363-8. [Crossref]
  • 22. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant: A finite element analysis. Clin Oral Impl Res 2005; 16: 480-5. [Crossref]
  • 23. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop 2006; 129: 721.e7-12. [Crossref
  • 24. Perillo L, Jamilian A, Shafieyoon A, Karimi H, Cozzani M. Finite element analysis of miniscrew placement in mandibular alveolar bone with varied angulations. Eur J Orthod 2015; 37: 56-9. [Crossref]
  • 25. Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung HM, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop 2007; 131: S68-S73. [Crossref]
  • 26. Lietz T. Mini-screws: Aspects of assessment and selection among different systems. Ludwig B, Baumgaertel S, Bowman SJ editors. Mini-implants in orthodontics: Innovative achorage concepts. London: Quintessence; 2008. p.11-72.
  • 27. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006; 130: 18-25. [Crossref]
  • 28. Sung, JH, Kyung HM, Bae SM, Park HS, Kwon OW, McNamara JA. Microimplants in Orthodontics. Daegu: Dentos; 2006. p.12-3.
  • 29. Buchter L, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Impl Res 2005; 16: 473-9. [Crossref]
  • 30. Roberts WE, Marshall KJ, Mozsary PG. Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site. Angle Orthod 1990; 60: 135-52. [Crossref]
  • 31. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997; 31: 763-7.
  • 32. Yamaguchi M, Inami T, Ito K, Kasai K, Tanimoto Y. Mini-Implants in the anchorage armamentarium: New paradigms in the orthodontics. Int J Biomater 2012; 2012: 302825. [Crossref]
  • 33. Li J, Li H, Shi L, Fok SLA, Ucer C, Devlin H, et al. A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent Mater 2007; 23: 1073-8. [Crossref]
  • 34. Melsen B, Verna C. Miniscrew implants: The Aarhus anchorage system. Semin Orthod 2005; 11: 24-31. [Crossref]
  • 35. Stahl E, Keilig L, Abdelgader I, Jager A, Bourauel C. Numerical analyses of biomechanical behaviour of various orthodontic anchorage implants. J Orofac Orthop 2009; 70: 115-27. [Crossref]
  • 36. Baumgaertel S. Predrilling of the implant site: is it necessary for orthodontic mini-implants? Am J Orthod Dentofacial Orthop 2010; 137: 825-9. [Crossref]
  • 37. Meijer GJ, Starmans FJM, de Putter C, Van Blitterswrjk CA. The influence of a flexible coating on the bone stress around dental implants. J Oral Rehabil 1995; 22: 105-11. [Crossref]
  • 38. Barbier L, Sloten JV, Krzeinski G, Schepers E. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 1998; 25: 847-58. [Crossref]
  • 39. Clelland NL, Ismail YH, Zaki HS, Pipko D. Three-dimensional finite element stress analysis in and around the screw-vent implant. Int J Oral Maxillofac Implants 1991; 6: 391-2.
  • 40. Vasquez M, Calao E, Becerra F, Becerra F, Ossa J, Enriquez C, et al. Initial stress difference between sliding and sectional mechanics with an endosseous implant as anchorage: A 3 dimensional finite element analysis. Angle Orthod 2001; 71: 247-56. [Crossref]
  • 41. Jasmine MI, Yezdani AA, Tajir F, Venu RM. Analysis of stress in bone and microimplants during en-masse retraction of maxillary and mandibular anterior teeth with different insertion angulations: A 3-dimensional finite element analysis study. Am J Orthod Dentofacial Orthop 2012; 141: 71-80. [Crossref]
APA Sidhu M, Chugh V, DMello K, Mehta A, chugh A, Tandon P (2020). Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. , 150 - 156. 10.5152/TurkJOrthod.2020.19109
Chicago Sidhu Manreet,Chugh Vinay Kumar,DMello Kuldeep,Mehta Anurag,chugh Ankita,Tandon Pradeep Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. (2020): 150 - 156. 10.5152/TurkJOrthod.2020.19109
MLA Sidhu Manreet,Chugh Vinay Kumar,DMello Kuldeep,Mehta Anurag,chugh Ankita,Tandon Pradeep Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. , 2020, ss.150 - 156. 10.5152/TurkJOrthod.2020.19109
AMA Sidhu M,Chugh V,DMello K,Mehta A,chugh A,Tandon P Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. . 2020; 150 - 156. 10.5152/TurkJOrthod.2020.19109
Vancouver Sidhu M,Chugh V,DMello K,Mehta A,chugh A,Tandon P Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. . 2020; 150 - 156. 10.5152/TurkJOrthod.2020.19109
IEEE Sidhu M,Chugh V,DMello K,Mehta A,chugh A,Tandon P "Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study." , ss.150 - 156, 2020. 10.5152/TurkJOrthod.2020.19109
ISNAD Sidhu, Manreet vd. "Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study". (2020), 150-156. https://doi.org/10.5152/TurkJOrthod.2020.19109
APA Sidhu M, Chugh V, DMello K, Mehta A, chugh A, Tandon P (2020). Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. Turkish Journal of Orthodontics, 33(3), 150 - 156. 10.5152/TurkJOrthod.2020.19109
Chicago Sidhu Manreet,Chugh Vinay Kumar,DMello Kuldeep,Mehta Anurag,chugh Ankita,Tandon Pradeep Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. Turkish Journal of Orthodontics 33, no.3 (2020): 150 - 156. 10.5152/TurkJOrthod.2020.19109
MLA Sidhu Manreet,Chugh Vinay Kumar,DMello Kuldeep,Mehta Anurag,chugh Ankita,Tandon Pradeep Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. Turkish Journal of Orthodontics, vol.33, no.3, 2020, ss.150 - 156. 10.5152/TurkJOrthod.2020.19109
AMA Sidhu M,Chugh V,DMello K,Mehta A,chugh A,Tandon P Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. Turkish Journal of Orthodontics. 2020; 33(3): 150 - 156. 10.5152/TurkJOrthod.2020.19109
Vancouver Sidhu M,Chugh V,DMello K,Mehta A,chugh A,Tandon P Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study. Turkish Journal of Orthodontics. 2020; 33(3): 150 - 156. 10.5152/TurkJOrthod.2020.19109
IEEE Sidhu M,Chugh V,DMello K,Mehta A,chugh A,Tandon P "Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study." Turkish Journal of Orthodontics, 33, ss.150 - 156, 2020. 10.5152/TurkJOrthod.2020.19109
ISNAD Sidhu, Manreet vd. "Evaluation of Stress Pattern Caused by Mini-Implant in Mandibular Alveolar Bone with Different Angulations and Retraction Forces: A Three-Dimensional Finite Element Study". Turkish Journal of Orthodontics 33/3 (2020), 150-156. https://doi.org/10.5152/TurkJOrthod.2020.19109