TANE VERGİLİ
(Karadeniz Teknik Üniversitesi, Fen Fakültesi, Matematik Bölümü, Trabzon, Türkiye)
Ayşe BORAT
(Bursa Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Bölümü, Bursa, Türkiye)
Yıl: 2020Cilt: 49Sayı: 4ISSN: 1303-5010 / 2651-477XSayfa Aralığı: 1414 - 1422İngilizce

50 0
Digital Lusternik-Schnirelmann category of digital functions
Roughly speaking, the digital Lusternik-Schnirelmann category of digital images studies how far a digital image is away from being digitally contractible. The digital LusternikSchnirelmann category (digital LS category, for short) is defined in [A. Borat and T. Vergili, Digital Lusternik-Schnirelmann category, Turkish J. Math. 2018]. In this paper, we introduce the digital LS category of digital functions. We will give some basic properties and discuss how this new concept will behave if we change the adjacency relation in the domain and in the image of the digital function and discuss its relation with the digital LS category of a digital image.
DergiAraştırma MakalesiErişime Açık
  • [1] J.I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50, 265–279, 1961.
  • [2] C. Berge, Graphs and hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.
  • [3] A. Borat and T. Vergili, Digital Lusternik-Schnirelmann category, Turkish J. Math. 42 (4), 1845–1852, 2018.
  • [4] L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15, 833–839, 1994.
  • [5] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision, 10, 51–62, 1999. [6] L. Boxer, Properties of digital homotopy, J. Math. Imaging Vision, 22, 19–26, 2005.
  • [7] L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vision, 24, 167–175, 2006.
  • [8] L. Boxer, Digital Products, Wedges, and Covering Spaces, J. Math. Imaging Vision, 25, 159–171, 2006.
  • [9] L. Boxer, Continuous maps on digital simple closed curves, Appl. Math. 1, 377–386, 2010.
  • [10] L. Boxer, Alternate Product Adjacencies in Digital Topology, Appl. Gen. Topol. 19 (1), 21–53, 2018.
  • [11] O. Cornea, G. Lupton, J. Oprea and D. Tanre, Lusternik-Schnirelmann category, in: Mathematical Surveys and Monographs Vol. 103, American Mathematical Society, 2003.
  • [12] T.T. Dieck, Algebraic Topology, European Mathematical Society, 2008.
  • [13] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29, 211–221, 2003.
  • [14] R.H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. 42, 333–370, 1941.
  • [15] S.E. Han, Computer topology and its applications, Honam Math. J. 25, 153–162, 2003.
  • [16] S.E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (1-3), 73–91, 2005.
  • [17] G.T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing, 55, 381–396, 1993.
  • [18] I.M. James, On category in the sense of Lusternik-Schnirelmann, Topology, 17, 331– 348, 1978.
  • [19] I. Karaca and M. Is, Digital topological complexity numbers, Turkish J. Math. 42 (6), 3173–3181, 2018.
  • [20] E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conference on Systems, Man, and Cybernetics, 227–234, 1987.
  • [21] L. Lusternik and L. Schnirelmann, Methodes topologiques dans les problemes variationnels, Institute for Mathematics and Mechanics, Moscow, 1930. (In Russian)
  • [22] G. Sabidussi, Graph multiplication, Math. Z. 72, 446–457, 1960.
  • [23] N.A. Scoville and W. Swei, On the Lusternik-Schnirelmann category of a simplicial map, Topology Appl. 216, 116–128, 2017.
  • [24] D. Stanley, On the Lusternik-Schnirelmann category of maps, Canad. J. Math. 54 (3), 608–633, 2002.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.