(ASELSAN Inc., 06172 Ankara, Türkiye)
(Hacettepe Üniversitesi ,Makine Mühendisliği 06800 Ankara, Türkiye)
Yıl: 2020Cilt: 40Sayı: 1ISSN: 1300-3615Sayfa Aralığı: 27 - 36İngilizce

32 0
This study presents a detailed method to estimate the thermal load of an articulated electric urban bus. Thermal load, which consists of solar, metabolic, ambient and ventilation heat loads, is estimated hourly for a one year period. A mathematical model takes into account the hourly passenger occupancy rate, hourly weather condition of the line and hourly solar loads as input and predicts the heat load accordingly.In order to determine the importance and contribution of each thermal load, all loads are calculated individually. Calculations are made for each hour of a year in order to observe the change of the contribution of each load in time. With the proposed method, the thermal load of an electric bus can be predicted in the system design phase and theHVAC system of the bus can be selected accordingly.
DergiAraştırma MakalesiErişime Açık
  • Aktacir M. A.,Büyükalaca O.,Bulut H.and Yilmaz T., 2008, Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments, Energy Conversion and Management, 49(6), 1766–1773.
  • Anna Laura P., Veronica Lucia C., Cristina P., Claudia F., Ilaria P., Gloria P., 2016, Calculation of Direct Solar and Diffuse Radiation in Israel Stefan, 1576, 1–202.
  • ASHRAE Handbook of Fundamental, American Society of Heating, Refrigerating, and Air Conditioning, 2001.ASHRAE Standard, “Ventilation for Acceptable Indoor Air Quality,” ASHRAE Standard 62, 1999
  • Fayazbakhsh, M. A.and Bahrami M., 2013, Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method.
  • Gis W., Kruczynski S., Taubert S., Wierzejski A., 2017, Studiesof energy use by electric buses in SORT testsGoswami D. Y, 2007, Solar Energy Resources
  • Graurs I., Laizans A., Rajeckis P.and Rubenis A., 2015, Public bus energy consumption investigation for transition to electric power and semi-dynamic charging, Engineering for Rural Development, 14, 366–371.
  • Juan A. A., Mendez C.A., Faulin J., De Armas J.and Grasman S. E., 2016, Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges, Energies, 9(2), 1–21.
  • Kamiya Y., Daisho Y., Takahashi S.and Narusawa K., 2006, Development and performance evaluation of an advanced electric micro bus transportation system -Part 1: Waseda Advanced Electric Micro Bus,22nd International Electric Vehicle Symposium (EVS),7, 836–847.
  • Lee J. W., Jang E. Y., Lee S. H., Ryou H. S., Choi S., Kim Y., 2014, Influence of the spectral solar radiation on the air flow and temperature distributions in a passenger compartment,International Journal of Thermal Sciences, 75, 36–44.
  • Lee J-Y., Choi J-W.and Kim H., 2008, Determination of Body Surface Area and Formulas to Estimate Body Surface Area Using the Alginate Method,Journal of Physiological AnthropologyLi W., Sun J., 2013, Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment,Applied Thermal Engineering, 50(1), 37–45.
  • Pihlatie M., Kukkonen S., Halmeaho T., Karvonen V.and Nylund N. O., 2015, Fully electric city buses -The viable option, 2014 IEEE International Electric Vehicle Conference, IEVC 2014.
  • Shellenberger M. and Nordhaus T., 2004, The death of environmentalismTosun E., Bilgili M., Tuccar G., Yasar A., Aydin K., 2016, Exergy analysis of an inter-city bus air-conditioning system,International Journal of Exergy, 20(4), 445.
  • Tran N., Powell B., Marks H., West R., Kvasnak A., 2009, Strategies for Design and Construction of High-Reflectance Asphalt Pavements,Transportation Research Record: Journal of the Transportation Research Board, 2098(1), 124–130.
  • Turkish Statistical Institute, 2010, Health Survey, 3654 AnkaraÜnal Ş., 2016, An experımental study on a bus aır condıtıoner to determıne ıts conformıty to desıgn and comfort condıtıons, Journal of Thermal Engineering, 3(1), 1089-1101.
  • www.otobussaatleri.net, 2019, Retrieved from https://www.otobussaatleri.net/istanbul-metrobus-hatlari-haritasi/

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.