Yıl: 2020 Cilt: 44 Sayı: 2 Sayfa Aralığı: 102 - 108 Metin Dili: Türkçe DOI: 10.4274/tpd.galenos.2020.6776 İndeks Tarihi: 18-10-2020

MikroRNA’ların Parazitolojideki Yeri

Öz:
Epigenetik düzenleyiciler olarak mikroRNA’lar (miRNA’lar), biyolojik fonksiyonları kontrol etmek için transkripsiyon sonrası seviyede ökaryotlarda gen ekspresyonunu düzenleyen küçük kodlayıcı olmayan RNA’lardır. MikroRNA’lar, parazitlerin gelişimi, fizyolojisi, enfeksiyonu, bağışıklığı ve karmaşık yaşam döngülerinde rol oynamaktadır. Ayrıca parazitler, konak miRNAekspresyonunu değiştirerek parazitlerin kontrolüne/temizlenmesine veya enfeksiyonun oluşmasına neden olmaktadır. Son 20 yılda, Caenorhabditis elegans ve diğer parazitlerde binlerce miRNA tanımlanmıştır. Bu nedenle, miRNA yolakları paraziter hastalıkların teşhisi ve terapötik kontrolü için potansiyel hedefler arasında yer almaktadır. Bu derlemede, protozoonlar, helmintlerve artropodlar ile ilgili miRNA’ların mevcut durumunu ve potansiyel fonksiyonlarını gözden geçirmeyi planladık.
Anahtar Kelime:

The Role of MicroRNAs in Parasitology

Öz:
MicroRNAs (miRNAs), as epigenetic regulators, are small non-coding RNAs regulating gene expression in eukaryotes at the posttranscriptional level to control biological functions. MicroRNAs play a role in development, physiology, infection, immunity and the complex life cycles of parasites. Also, parasite infection can alter host miRNA expression that might result in either parasite clearance or infection. Over the past 20 years, thousands of miRNAs have been identified in the nematode Caenorhabditis elegans and other parasites. Thus, miRNA pathways are potential targets for the diagnostic and therapeutic control of parasitic diseases. Here, we review the current status and potential functions of miRNAs related to protozoans, helminths, and arthropods.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Current Opinion in Chemical Biology 2019;51:11-7.
  • 2. Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. RNA 2002;8:855-60.
  • 3. Sudarsana Reddy L, Sarojamma V, Ramakrishna V. Future of RNAi in Medicine: A Review. World Journal of Medical Sciences 2007;2:1-14.
  • 4. Van der Krol AR. Flavonoid Genes in Petunia: Addition of a Limited Number of Gene Copies May Lead to a Suppression of Gene Expression. The Plant Cell Online 1990;2:291-9.
  • 5. Horvitz HR, Sulston JE. Isolation and genetic characterization of celllineage mutants of the nematode Caenorhabditis elegans. Genetics 1980;96:435-54.
  • 6. Ambros V, Horvitz HR. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev 1987;1:398-414.
  • 7. Ferguson EL, Sternberg PW, Horvitz HR. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature 1987;326:259-67.
  • 8. Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell 2004;116:89-92.
  • 9. Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011;717:1-8.
  • 10. Zhou X, Yang PC. MicroRNA: A Small Molecule with a Big Biological Impact. MicroRNA 2012;1:1.
  • 11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116: 281-297.
  • 12. Lim LP, Glasner ME, Yekta S, Burger CB, Bartel DP. Vertebrate MicroRNA Genes. Science 2003;299:1540.
  • 13. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014;15:509-24.
  • 14. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol Cell 2016;64:320-33.
  • 15. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 2012;3:311-30.
  • 16. Cai P, Gobert GN, McManus DP. MicroRNAs in Parasitic Helminthiases: Current Status and Future Perspectives.Trends Parasitol 2016;32:71-86.
  • 17. Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 2012;3:56.
  • 18. Rossi RL, Rossetti, G, Wenandy L, Curti, S, Ripamonti A, Bonnal RJP, et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR125b. Nature Immunology 2011;12:796-803.
  • 19. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions and Circulation. Front Endocrinol 2018;9:402.
  • 20. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
  • 21. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH. Multifarious transcriptional regulation of adhesion protein gene ap65-1 by a novel Myb1 protein in the protozoan parasite Trichomonas vaginalis. Eukaryot Cell 2006;5:391-9.
  • 22. Zamore PD.Ancient pathways programmed by small RNAs. Science 2002;296:1265-9.
  • 23. Blackman MJ. RNAi in protozoan parasites: what hope for the Apicomplexa? Protist 2003;154:177-180.
  • 24. Jolly ER, Chin CS, Miller S, Bahgat MM, Lim KC, DeRisi J, et al. Gene expression patterns during adaptation of a helminth parasite to different environmental niches. Genome Biology 2007,8:R65.
  • 25. Krautz-Peterson G, Skelly PJ. Schistosoma mansoni: the dicer gene and its expression. Exp Parasitol 2008;118:122-8.
  • 26. Militello KT, Refour P, Comeaux CA, Duraisingh MT. Antisense RNA and RNAi in protozoan parasites: Working hard or hardly working? Molecular and Biochemical Parasitology 2008;157:117-26.
  • 27. Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 2013;3:43.
  • 28. Cohen A, Combes V, Grau GER. MicroRNAs and Malaria - A Dynamic Interaction Still Incompletely Understood. J Neuroinfect Dis 2014;5:165.
  • 29. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002;419:498-511.
  • 30. Chamnanchanunt S, Kuroki C, Desakorn V, Enomoto M, Thanachartwet V, Sahassananda D, et al. Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection. Experimental Parasitology 2015;155:19-25.
  • 31. Baro B, Deroost K, Raiol T, Brito M, Almeida ACG, de Menezes-Neto, et al. Plasmodium vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid miRNA profile. PLOS Neglected Tropical Diseases 2017;11:e0005365.
  • 32. Rathjen T, Nicol C, McConkey G, Dalmay T. Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett 2006;580:5185-8.
  • 33. Svasti S, Masaki S, Penglong T, Abe Y, Winichagoon P, Fucharoen S, et al. Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann Hematol 2010;89:953-8.
  • 34. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 2012;12:187-99.
  • 35. Bayer-Santos E, Marini MM, da Silveira JF. Non-coding RNAs in HostPathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites. Front Microbiol 2017;8:474.
  • 36. Duclos S, Desjardins M. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbio 2000; l2:365-77.
  • 37. Hashemi N, Sharifi M, Tolouei S, Hashemi M, Hashemi C, Hejazi SH. Expression of hsa Let-7a MicroRNA of macrophages infected by Leishmania major. Int J Med Res Health Sci 2016;5:27-32.
  • 38. Boyerinas B, Park S-M, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocrine-related cancer 2010;17:F19-F36.
  • 39. Chen XM, Splinter PL, O’Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. Journal of Biological Chemistry 2007;282:28929-38.
  • 40. Zhou R, Hu G, Liu J, Gong AY, Drescher KM and Chen XM. NFκB p65- dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 2009;5:e1000681.
  • 41. Gong A, Zhou R, Hu G, Liu J, Sosnowska D, Drescher KM, et al. Cryptosporidium parvum Induces B7‐H1 Expression in Cholangiocytes by Down‐Regulating MicroRNA‐513. The Journal of Infectious Diseases 2010;201:160-9.
  • 42. Judice CC, Bourgard C, Kayano AC, Albrecht L, Costa FT. MicroRNAs in the Host-Apicomplexan Parasites Interactions: A Review of Immunopathological Aspects. Front Cell Infect Microbiol 2016;6:5.
  • 43. Han H, Peng J, Hong Y, Zhang M, Han Y, Liu D, et al. MicroRNA expression profile in different tissues of BALB/c mice in the early phase of Schistosoma japonicum infection. Molecular and Biochemical Parasitology 2013;188:1-9.
  • 44. He X, Sai X, Chen C, Zhang Y, Xu X, Zhang D, et al. Host serum miR-223 is a potential new biomarker for Schistosoma japonicum infection and the response to chemotherapy. Parasit Vectors 2013;6:272.
  • 45. Alizadeh Z, Mahami-Oskouei M, Spotin A, Kazemi T, Ahmadpour E, Cai P, et al. Parasite-derived microRNAs in plasma as novel promising biomarkers for the early detection of hydatid cyst infection and postsurgery follow-up. Acta Tropica 2019;105255.
  • 46. Mariconti M, Vola A, Manciulli T, Genco F, Lissandrin R, Meroni V, et al. Role of microRNAs in host defense against Echinococcus granulosus infection: a preliminary assessment. Immunologic Research 2019;67:93- 97.
  • 47. Ren B, Wang H, Ren L, Yangdan C, Zhou Y, Fan H, et al. Screening for microRNA-based diagnostic markers in hepatic alveolar echinococcosis. Medicine 2019;98:e17156.
  • 48. Morris DL, Taylor DH. Echinococcus granulosus: development of resistance to albendazole in an animal model. Journal of Helminthology 1990;64:171.
  • 49. Mortezaeia S, Afgara A, Mohammadia MA, Mousavia SM, Sadeghib B, Harandia MF. The effect of albendazole sulfoxide on the expression of miR-61 and let-7 in different in vitro developmental stages of Echinococcus granulosus. Acta Tropica 2019;195:97-102.
  • 50. Sonenshine D. The Biology of Tick Vectors of Human Disease,. In: Goodman J, Dennis D, Sonenshine D, editors. Tick-Borne Diseases of Humans. ASM Press: Washington DC; 2005.p.12-36.
  • 51. Hackenberg M, Langenberger D, Schwarz A, Erhart J, Kotsyfakis M. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. Cold Spring Harbor Laboratory Press for the RNA Society 2017;23:1259-69.
  • 52. Lei Z, Lv Y, Wang W, Guo Q, Zou F, Hu S, et al. MiR-278-3p regulates pyrethroid resistance in Culex pipiens pallens. Parasitology Research 2014;114:699-706.
  • 53. Hong S, Guo Q, Wang W, Hu S, Fang F, Lv Y, et al. Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance. Insect Biochemistry and Molecular Biology 2014;55:39-50.
  • 54. Arcà B, Colantoni A, Fiorillo C, Severini F, Benes V, Di Luca M, et al. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep 2018;9:2955.
APA ulusan ö, Caner A (2020). MikroRNA’ların Parazitolojideki Yeri. , 102 - 108. 10.4274/tpd.galenos.2020.6776
Chicago ulusan özlem,Caner Ayse MikroRNA’ların Parazitolojideki Yeri. (2020): 102 - 108. 10.4274/tpd.galenos.2020.6776
MLA ulusan özlem,Caner Ayse MikroRNA’ların Parazitolojideki Yeri. , 2020, ss.102 - 108. 10.4274/tpd.galenos.2020.6776
AMA ulusan ö,Caner A MikroRNA’ların Parazitolojideki Yeri. . 2020; 102 - 108. 10.4274/tpd.galenos.2020.6776
Vancouver ulusan ö,Caner A MikroRNA’ların Parazitolojideki Yeri. . 2020; 102 - 108. 10.4274/tpd.galenos.2020.6776
IEEE ulusan ö,Caner A "MikroRNA’ların Parazitolojideki Yeri." , ss.102 - 108, 2020. 10.4274/tpd.galenos.2020.6776
ISNAD ulusan, özlem - Caner, Ayse. "MikroRNA’ların Parazitolojideki Yeri". (2020), 102-108. https://doi.org/10.4274/tpd.galenos.2020.6776
APA ulusan ö, Caner A (2020). MikroRNA’ların Parazitolojideki Yeri. Türkiye Parazitoloji Dergisi, 44(2), 102 - 108. 10.4274/tpd.galenos.2020.6776
Chicago ulusan özlem,Caner Ayse MikroRNA’ların Parazitolojideki Yeri. Türkiye Parazitoloji Dergisi 44, no.2 (2020): 102 - 108. 10.4274/tpd.galenos.2020.6776
MLA ulusan özlem,Caner Ayse MikroRNA’ların Parazitolojideki Yeri. Türkiye Parazitoloji Dergisi, vol.44, no.2, 2020, ss.102 - 108. 10.4274/tpd.galenos.2020.6776
AMA ulusan ö,Caner A MikroRNA’ların Parazitolojideki Yeri. Türkiye Parazitoloji Dergisi. 2020; 44(2): 102 - 108. 10.4274/tpd.galenos.2020.6776
Vancouver ulusan ö,Caner A MikroRNA’ların Parazitolojideki Yeri. Türkiye Parazitoloji Dergisi. 2020; 44(2): 102 - 108. 10.4274/tpd.galenos.2020.6776
IEEE ulusan ö,Caner A "MikroRNA’ların Parazitolojideki Yeri." Türkiye Parazitoloji Dergisi, 44, ss.102 - 108, 2020. 10.4274/tpd.galenos.2020.6776
ISNAD ulusan, özlem - Caner, Ayse. "MikroRNA’ların Parazitolojideki Yeri". Türkiye Parazitoloji Dergisi 44/2 (2020), 102-108. https://doi.org/10.4274/tpd.galenos.2020.6776