Yıl: 2018 Cilt: 14 Sayı: 2 Sayfa Aralığı: 148 - 165 Metin Dili: Türkçe DOI: 10.22392/egirdir.371340 İndeks Tarihi: 18-10-2020

Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*

Öz:
Sanayileşme ve kentleşmenin artması neticesinde ortaya çıkan ağır metal içeren atık suların deşarjı suculekosistemlerde önemli bozulmalara yol açmıştır. Ağır metal kirliliği gözlenen sucul ekosistemlerinbiyoremediasyonuna yönelik ilgi, maliyetlerinin düşük olması ve çevre dostu olmaları nedeniyle giderekartmaktadır. Bu bağlamda, ağır metal ile kirlenmiş atık sular ve doğal suların remediasyonunda suculmakrofitler daha sık kullanılmaya başlamıştır. Bu derleme çalışmasında, remediasyonda sık kullanılan bazı suiçi ve yüzücü sucul makrofitler ve remediasyon kapasiteleri hakkında son yıllarda yapılan çalışmalarderlenmiştir
Anahtar Kelime:

The Use of Some Sub-mersed and Free floating Aquatic Macrophytes in the Bioremediation of Heavy Metal Pollution

Öz:
The dramatic increase in industrialization and urbanization has led to an increase in the discharge rate of wasterwaters including heavy metals which in turn caused significant alterations in aquatic ecosystems. Bioremediation of aquatic ecosystems polluted with heavy metals has been favaoured in the recent years due to ecofriendly applications and lower costs. Thus, there is an increase in the use of aquatic macrophytes for the remediation of wastewater and natural water bodies polluted with heavy metals. In this review paper, the recent research focusing on the frequently used some sub-mersed and free floating aquatic macophytes and their remediation capacity is reviewed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abdallah, M.A.M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol. 33, 1609–1614
  • Ahmad, S. S., Reshi, Z. A., Shah M. A., Rashid, I., Ara, R. & Andarabi, S. M. A. (2016). Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: management implications. Wetlands Ecol Manage, 24,469–475.
  • Ajayi, T. O. & Ogunbayo, A. O. (2012). Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J. Sustain. Develop., 5 (7), 80–90.
  • Alrumman, S., El-kott, A. & Sherif, K. (2016). Water pollution: source and treatment. American Journal of Environmental Engineering, 6, 88-89.
  • Alvarado, S., Guédez, M., Lué-Merú, M. P., Nelson, G., Alvaro, A., Jesús, A. C. & Gyula, Z. (2008). Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresource Technology, 99, 8436-8440.
  • Appenroth, K. J. (2010). Definition of “heavy metals” and their role in biological systems. In Soil Heavy Metals, 19, 19-29.
  • Arora, A., Saxena, S. & Sharma, D. K. (2006). Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology & Biotechnology, 22, 97-100.
  • Arora, A., Sood, A. & Singh, P. K. (2004). Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology, 3, 302-304.
  • Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F. & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31, 881-886.
  • Axtell, N.R., Sternberg, S.P.K. & Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 89(1), 41-48.
  • Baykal, H. & Baykal, T. (2008). “Küreselleşen Dünyada Çevre Sorunları”. Mustafa Kemal Ünv. Sosyal Bilimler Enstitüsü Dergisi, 5(9), 1-17.
  • Boyd, R. S. (2004). Ecology of Metal Hyperaccumulation. The New Phytologist, 162(3), 563-567.
  • Dai, L.P., Xiong ZT, Huang Y & Li MJ. (2006). Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environmental Toxicology. 21,505–512.
  • Das, S., Goswami, S. & Talukdar, A. D. (2014). A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin of Environmental Contamination and Toxicology, 92(2), 169-174.
  • Dhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. 111p. Springer-Nature.
  • Doni, S., Macci, C., Peruzzi, E., Iannelli, R. & Masciandaro, G. (2015). Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecological Engineering, 81, 146-157.
  • Duffus, J. H. (2002). "Heavy metals" a meaningless term (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807.
  • El-Khatib, A.A., Hegazy, A.K. & Abo-El-Kassem, A.M. (2014). Bioaccumulation potential and physiological responses of aquatic macrophytes to Pb pollution. International Journal of Phytoremediation, 16, 29-45.
  • Ergönül, M.B. & Atasağun, S. 2017. Chapter 16 -The effects of chronic low level zinc (Zn) exposure on the hematological profile of tench, Tinca tinca L.1758. In: Trends in fisheries and aquatic animal health, editor: Berilis, P. Bentham Science Publishing.
  • Etim, E. E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3), 120-136.
  • Fisher, S. W. (1995). Mechanism of bioaccumulation in aquatic systems. Reviews of Environmental Contamination and Toxicology, 142, 87-117.
  • Forni, C., Chen, J., Tancioni, L. & Caiola, M. (2001). Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Research, 35(6), 1592-1598.
  • Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407-418.
  • Galal, T. M. & Farahat, E. A. (2015). The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environmental Monitoring and Assessment, 187(11), 701.
  • Garnczarska, M. & Ratajczak, L. (2000). Metabolic responses of Lemna minor to lead ions I. Growth, chlorophyll level and activity of fermentative enzymes. Acta Physiol Plant, 22(4),423–7.
  • Goswami, C., Majumder, A., Mishra, A.K. & Bandyopadhyay, K. (2014). Arsenic uptake by Lemna minor in hydroponic system. Int. J. Phytorem. 16, 1221-1227.
  • Gupta, P., Roy, S. & Mahindrakar, A. B. (2012). Treatment of water using water hyacinth, water lettuce and vetiver grass - A review. Resources and Environment, 2(5), 202-215
  • Gür, N., Türker, O.C. & Böcük, H. (2016). Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere, 157, 1-9.
  • Hasasn, S. H., Talat, M. & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresource Technology, 98(4), 918-928.
  • Hou, W., Chen, X., Song, G., Wang, Q. & Chang, C. C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45, 62-69.
  • Hurd, N. A. & Sternberg, S.P.K. (2008). Bioremoval of aqueous lead using Lemna minor. International Journal of Phytoremediation, 10, 278-288.
  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60- 72.
  • Järup, L. (2003). Hazards of metal contamination. British Medical Bulletin, 68, 167-182.
  • Jayaweera, M. W., Kasturiarachchia, J. C., Kularatnea, R. K. A. & Wijeyekoonb, S. L. J. (2008). Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J. Environ. Manage. 87 (3), 450–460.
  • Johnson, D., Kershaw, L., MacKinnon, A. & Pojar, J. (1995). Plants of the Western Boreal Forest and Aspen Parkland. Lone Pine, Vancouver, BC.
  • Kara, Y., Basaran, D., Kara, I., Zeytunluoglu, A. & Genc, H. (2003). Bioaccumulation of nickel by aquatic macrophyta Lemna minor (duckweed). Int. J. Agr. Biol., 5 (3), 281-283.
  • Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M. & Forster, C. F. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol., 92(2),197-200.
  • Keskinkan, O., Göksu, M. Z. L., Yüceer, A., Başıbüyük, M. & Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 1-5.
  • Keskinkan, O., Goksu, M. Z. L., Yuceer, A. & Basibuyuk, M. (2007). Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Eng Life Sci., 7, 192-196.
  • Khellaf, N. & Zerdaoui, M. (2009). Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology, 100,6137–6140.
  • Khosravi, M., Rakhshaee, R. & Ganji, M. T. (2005). Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors. Journal of Hazardous Materials, 127(1-3),228-237.
  • Kocataş, A. (2008). Çevre kirlenmesi, Çevre Biyolojisi. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, pp. 456-471,İzmir.
  • Kulshreshtha, A., Ranu, A., Manika, B. & Shilpi, S. (2014). A Review on bioremediation of heavy metals in contaminated water. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8, 44-50.
  • Lesage, E., Mundia C., Rousseau, D. PL., Van de Moortel UGent, A., Du Laing UGent, G., Tack UGent, F., De Pauw, N. & Verloo, M. (2008). Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum L. Wastewater treatment, plant dynamıcs and management ın constructed and natural wetlands. p.211-221
  • Liao, S.W. & Chang, W.L. 2004. Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Journal of Aquatic Plant Management. 42, 60-68.
  • Lissy, P. N. M. & Madhu, G. (2011). Removal of heavy metals from waste water using water hyacinth. ACEE International Journal On Transportation And Urban Development. (IJTUD), 1, 48-52.
  • Lu, Q., He, Z. L. & Graetz, D. A. (2011). Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 18, 978-86
  • Maine, M. A., Sune, N. & Hadad, H. (2006). Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological Engineering, 26, 341-347.
  • Maltby, L., Arnold, D., Arts, G., Davies, J., Heimbach, F., Pickl, C. & Poulsen, V. (2010). Aquatic macrophyte risk assessment for pesticides. SETAC Europe Workshop AMRAP, Wageningen, Netherlands, pp 135. SETAC Press & CRC Press, Taylor & Francis Group, Boca Raton, London, New York.
  • Miretzky, P. Saralegui, A. & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals. Chemosphere, 57, 997–1005.
  • Mishra, V. K. & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99(15), 7091-7097.
  • Mishra, V.K. & Tripathi, B.D. (2009). Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). Journal of Hazardous Materials, 164(2-3), 1059-1063.
  • Mishra, V. K., Tripathi, B. D. & Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172(2-3),749-54.
  • Mokhtar, H., Morad, N. & Fizri, F.F.A. (2011). Hyperaccumulation of copper by two species of aquatic plants. Intern. Conf. Environ. Sci. Eng. IPCBEE 8. IACSIT Press, Singapore.
  • Moyo, P., Chapungu, L. & Mudzengi, B. (2013). Effectiveness of water hyacinth (Eichhornia crassipes) in remediating polluted water: The case of Shagashe river in Masvingo, Zimbabwe. Advances in Applied Science Research, 4(4),55-62.
  • Nahlik, A. & Mitsch, W. J. (2006). Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28(3), 246-257.
  • Noorjahan, C. M. & Jamuna, S. (2015). Biodegradation of sewage waste water using Azolla microphylla and ıts reuse for aquaculture of fish Tilapia mossambica. Journal of Environmental Science, Toxicology and Food Technology, 9(3), 75-80.
  • Odjegba, V.J. & Fasidi, I.O. (2004). Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology, 13(97), 637-646.
  • Özbolat, G. & Tuli, A. (2016). Ağır metal toksisitesinin insan sağlığına etkileri. Arşiv Kaynak Tarama Dergisi 25(4), 502-521.
  • Pandey, V.C. (2012). Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicology and Environmental Safety, 82(1), 8-12.
  • Raghav, N. & Shrivastava, J. N. (2016). Toxic pollution in river water and bacterial remediation: An overview. International Journal of Current Microbiology and Applied Sciences, 5(4), 244-266.
  • Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytorem, 10, 430–439.
  • Rai PK. (2010). Microcosom investigation of phytoremediation of Cr using Azolla pinnata. International Journal of Phytoremediation.12, 96–104.
  • Rai, U. N., Sinha, S., Tripathi, R. D. & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol. Eng., 5, 5-12. Razzaq, R. (2017). Phytoremediation: An environmental friendly technique - A review. Journal of Environmental Analytical Chemistry, 4(2), 195.
  • Roberts, A. E., Boylen, C. W. & Nierzwicki-Bauer, S. A. (2014). Effects of lead accumulation on the Azolla caroliniana-Anabaena association. Ecotoxicol Environ Saf. 10.1016/j.ecoenv.2014.01.019. Epub 2014 Feb 5
  • Sanchez-Galvan, G., Monroy, O., Gomez, J. & Olguin, E. J. (2008). Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air, and Soil Pollution, 194, 77-90.
  • Shafi, N., Pandit, A. K., Kamili, A. N. & Mushtaq, B. (2015). Heavy metal accumulation by Azolla pinnata of Dal Lake ecosystem. India. Journal of Environment Protection and Sustainable Development, 1(1), 8-12.
  • Sharma, S., Singh, B. & Manchanda, V. K. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res Int., 22(2), 946-962.
  • Sood, A., Uniyal, P. L., Prasanna, R. & Ahuwalia, A. S. (2011). Phytoremediation potential of aquatic macrophyte, Azolla. AMBIO, 41, 122–137
  • Stankovic, Z., Pajevic, S. & Vuckovic, M. (2000). Concentrations of trace metals in dominant aquatic plants of the Lake Provala (Vojvodina, Yugoslavia). Biologia Plantarum, 43(4), 583-585.
  • Tackholm, V. (1974). Student's flora of Egypt, 2nd edition, P: 888 Cairo University (publ.), cooperation printing company, Beirut.
  • Tangahu, B. J., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, Article ID 939161, 31 pp.
  • Taylan, Z. S. & Böke Özkoç, H. (2007). Potansiyel ağır metal kirliliğinin belirlenmesinde akuatik organizmaların biokullanılabilirliliği. BAÜ FBE Dergisi, 9(2), 17-33.
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology, 101, 133-164.
  • Török, A., Gulyás, Z., Szalai, G., Kocsy, G. & Majdik, C. (2015). Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization, J. Hazard. Mater. 299, 371-378.
  • Tyagi, S., Garg, N. & Paudel, R. (2014). Environmental degradation: Causes and consequences. European Researcher, 81(8-2), 1491-1498.
  • Tripathi, A. & Ranjan, M. R. (2015). Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodeg, 6, 315
  • Tripathy, B. D. & Upadhyay, A. R. (2003). Dairy effluent polishing by aquatic macrophytes. Water. Air. Soil. Pollut., 9, 377-385.
  • US EPA. (Environmental Protection Agency), “Introduction To Phytoremediation”, EPA/600/r– 99/107, Cincinati, Ohio, U.S.A, pp: 72, http://www.clu-in.org
  • Üçüncü, E., Tunca, E., Fikirdeşici, Ş., Özkan, A. D. & Altındağ, A. (2013). Phytoremediation of Cu, Cr and Pb Mixtures by Lemna minor. Bull Environ Contam Toxicol., 91, 600-604.
  • Ünlü, A. & Tunç, M. S. (2007). Evsel Atıksu deşarjı öncesinde ve sonrasında kehli deresi’nin su kalitesi değişiminin incelenmesi, İtüdergisi/E Su Kirlenmesi Kontrolü, 17(2), 65-75.
  • Vasavi, A., Usha, R. & Swamy, P. M. (2010). Phytoremediation – An overview review. Journal of Industrial Pollution Control, 26(1), 83-88.
  • Verma, R. & Suthar, S. (2015). Lead and cadmium removal from water using duckweed—Lemna gibba L.: impact of pH and initial metal load. Alex. Eng. J. 54, 1297–1304.
  • Vesely, T. Tlustos, P. & Szakova, J. (2011). The use of water lettuce (Pistia Stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. International Journal of Phytoremediation, 13(9), 859-872.
  • Wang, J., Feng, X., Anderson, C. W., Xing, Y. & Shang, L. (2012). Remediation of mercury contaminated sites - A review. Journal of Hazardous Materials, 221-222, 1-18.
  • Wetzel, R. G. (2001). Limnoloji: Göl ve Nehir Ekosistemleri. 3. Basımdan Çeviri. Çeviri Editörü; M. B. Ergönül. 2017. 1006 p. Nobel Yayınevi. Ankara
  • Yabanlı, M. (2014). Bioaccumulation of heavy metals in tissues of the gibel carp Carassius gibelio: Example of Marmara Lake, Turkey. Russian Journal of Biological Invasions, 5(3),217-224.
  • Yalçın, V. (2014). Bazı Ağır Metallerin (Pb, Cd, Ni) Sucul Bitkiler (Salvinia natans (L.), Lemna minor L.) Üzerinde Yaptığı Stres Ve Biyolojik Yanıtlar, Nevşehir Hacı Bektaş Veli Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Nevşehir.
  • Yavuz, O. & Sarıgül, N. (2016). Toprak ve sucul ortamlardaki ağır metal kirliliği ve ağır metal dirençli mikroorganizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1), 44-51.
  • Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R. & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817-831.
APA Nassouhi D, ERGÖNÜL M, ERGEN Ş, KARACAKAYA P, Atasağun S (2018). Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. , 148 - 165. 10.22392/egirdir.371340
Chicago Nassouhi Danial,ERGÖNÜL Mehmet Borga,ERGEN Şeyda FİKİRDEŞİCİ,KARACAKAYA Pınar,Atasağun Sibel Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. (2018): 148 - 165. 10.22392/egirdir.371340
MLA Nassouhi Danial,ERGÖNÜL Mehmet Borga,ERGEN Şeyda FİKİRDEŞİCİ,KARACAKAYA Pınar,Atasağun Sibel Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. , 2018, ss.148 - 165. 10.22392/egirdir.371340
AMA Nassouhi D,ERGÖNÜL M,ERGEN Ş,KARACAKAYA P,Atasağun S Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. . 2018; 148 - 165. 10.22392/egirdir.371340
Vancouver Nassouhi D,ERGÖNÜL M,ERGEN Ş,KARACAKAYA P,Atasağun S Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. . 2018; 148 - 165. 10.22392/egirdir.371340
IEEE Nassouhi D,ERGÖNÜL M,ERGEN Ş,KARACAKAYA P,Atasağun S "Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*." , ss.148 - 165, 2018. 10.22392/egirdir.371340
ISNAD Nassouhi, Danial vd. "Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*". (2018), 148-165. https://doi.org/10.22392/egirdir.371340
APA Nassouhi D, ERGÖNÜL M, ERGEN Ş, KARACAKAYA P, Atasağun S (2018). Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(2), 148 - 165. 10.22392/egirdir.371340
Chicago Nassouhi Danial,ERGÖNÜL Mehmet Borga,ERGEN Şeyda FİKİRDEŞİCİ,KARACAKAYA Pınar,Atasağun Sibel Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14, no.2 (2018): 148 - 165. 10.22392/egirdir.371340
MLA Nassouhi Danial,ERGÖNÜL Mehmet Borga,ERGEN Şeyda FİKİRDEŞİCİ,KARACAKAYA Pınar,Atasağun Sibel Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, vol.14, no.2, 2018, ss.148 - 165. 10.22392/egirdir.371340
AMA Nassouhi D,ERGÖNÜL M,ERGEN Ş,KARACAKAYA P,Atasağun S Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi. 2018; 14(2): 148 - 165. 10.22392/egirdir.371340
Vancouver Nassouhi D,ERGÖNÜL M,ERGEN Ş,KARACAKAYA P,Atasağun S Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi. 2018; 14(2): 148 - 165. 10.22392/egirdir.371340
IEEE Nassouhi D,ERGÖNÜL M,ERGEN Ş,KARACAKAYA P,Atasağun S "Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*." Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14, ss.148 - 165, 2018. 10.22392/egirdir.371340
ISNAD Nassouhi, Danial vd. "Ağır Metal Kirliliğinin Biyoremediasyonunda Bazı Su içi ve Yüzücü Sucul Makrofitlerin Kullanımı*". Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14/2 (2018), 148-165. https://doi.org/10.22392/egirdir.371340