Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source

Yıl: 2020 Cilt: 16 Sayı: 1 Sayfa Aralığı: 106 - 112 Metin Dili: İngilizce DOI: 10.22392/actaquatr.603538 İndeks Tarihi: 25-10-2020

Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source

Öz:
Sensorial and fatty acid levels of sand smelt as an alternative protein and fatty acid source against rainbow trout wereinvestigated. The fish were separated into two groups; which were identified in expensive/known one (rainbow trout) and thecheaper/little-known one (sand smelt). Although rainbow trout and sand smelt groups have the same proximate and sensorialvalues, sand smelt group preferred more according to price/flavor preference. The fatty acid combinations of groups changedfrom 27.56% to 38.80% saturated (SFA), 26.30–31.22% monounsaturated (MUFAs) and 34.91–41.22% polyunsaturatedacids (PUFAs). Between the groups, the highest rates were myristic acid (3.15–3.73%), palmitic acid (15.99–26.85%),palmitoleic acid (5.82–6.01%), stearic acid (4.44–6.40%), oleic acid (11.81–20.40%), linoleic acid (2.47–16.73%),eicosapentaenoic acid (2.30–8.80%) and docosahexaenoic acid (7.84–15.77%). The values of PUFAs-n3 and DHA werehigher in a cheaper group than an expensive one.
Anahtar Kelime:

Daha Ucuz Bir Protein ve Yağ Asidi Kaynağı Olarak Gümüş Balığı (Atherina boyeri) ile Gökkuşağı Alabalığının (Oncorhynchus mykiss) Karşılaştırılması

Öz:
Alternatif bir protein ve yağ asidi kaynağı olarak gümüş balığının gökkuşağı alabalığına karşı yağ asidi seviyeleri araştırılmıştır. Balıklar iki gruba ayrılarak; pahalı / bilinen (gökkuşağı alabalığı) ve daha ucuz / az bilinen (gümüş balığı) olarak tanımlandı. Gökkuşağı alabalığı ve gümüş balığı grupları yakın besin ve duyusal değerlere sahip olsa da gümüş balığı grubu fiyat / lezzet tercihine göre daha fazla tercih edilmiştir. Grupların yağ asidi kombinasyonları 27,56%'dan 38,80% doymuş (SFA), 26,30%–31,22% tekli doymamış (MUFA) ve 34,91%-41,22% doymamış asitleri (PUFA) şeklinde değişmiştir. Gruplar arasında en yüksek oranlar miristik asit (3,15-3,73%), palmitik asit (15,99-26,85%), palmitoleik asit (5,82-6,01%), stearik asit (4,44-6,40%), oleik asit (11,81-20,40%), linoleik asit (2,47-16,73%), eikosapentaenoik asit (2,30- 8,80%) ve dokosaheksaenoik asit (7,84-15,77%) idi. PUFAs-n3 ve DHA değerleri daha ucuz olan grupta pahalı gruba göre daha yüksekti.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ackman, R.G. (1989). Nutritional composition of fats in seafoods. Progress in Food and Nutrition Science, 13 (3-4), 161-289.
  • Ackman, R.G. (1999). R.G. Ackman R.G. Ackman (Ed.), Marine biogenic lipids, fats and oils, CRP Press, Boca Raton, FL.
  • AOAC, (1984). AOAC Official methods of analysis of the association of official analytical chemists (14th ed.), Association of official analytical chemists, Washington, DC.
  • AOAC, (1990). AOAC Official methods of analysis of the association of the official analysis chemists (15th ed.), Association of official analytical chemists, Washington, DC
  • Bligh, E.C., & Dyer, W.J., (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37 (8), 911-917. https://doi.org/10.1139/o59-099
  • Chen, I.C., Chapman, F.A., Wei, C.I., Porteir, K.M., & O”Keefe, S.F. (1995). Differentiation of cultured and wild sturgeon (Acipencer oxyrinchus desotoi) based on fatty acid composition. Journal of Food Science, 60 (3) 631-635. https://doi.org/10.1111/j.1365-2621.1995.tb09844.x
  • Childs, M.T., King, I.B., &Knopp, R.H. (1990). Divergent lipoprotein responses to fish oils with various ratios of eicosapentaenoic and docosahexaenoic acids. Animal Journal of Clinical Nutrition, 52 (4), 632-639. https://doi.org/10.1093/ajcn/52.4.632
  • Conner, W.E. (2000). Importance of n-3 fatty acids in health and disease. The American Journal of Clinical Nutrition, 17 (1), 171S-175S. https://doi.org/10.1093/ajcn/71.1.171S
  • Fenton, W.S., Hibbeln, J., & Knable, M. (2000). Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biological Psychiatry, 47 (1), 8-21.
  • Giudetti, A.M., & Cagnazzo, R. (2012). Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins Other Lipid Mediators, 99 (3-4), 57-67. https://doi.org/10.1016/j.prostaglandins.2012.09.006
  • Haliloğlu, H.I., Aras, N.M., & Yetim, H. (2001). Comparison of Muscle Fatty Acids of Three Trout Species (Salvelinus alpinus, Salmo trutta fario, Oncorhynchus mykiss) Raised under the Same Conditions. Turkish Journal of Veterinary and Animal Sciences, 26 (5), 1097-1102.
  • HMSO UK. (1994). Nutritional aspects of cardiovascular disease (report on health and social subjects No. 46). London: HMSO.
  • Iaconisi, V., Bonellia, A., Pupino, R., Gai, F., & Paris, G. (2018). Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture, 484: 197-204. https://doi.org/10.1016/j.aquaculture.2017.11.034
  • Ichihara, K., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31 (8), 535-539.
  • İzci, L., Günlü, A., & Bilgin, Ş. (2011). Production of Fish Chips from Sand Smelt (Atherina boyeri, RISSO 1810) and Determination of Some Quality Changes. Iranian Journal of Fisheries Sciences, 10 (2), 230- 241.
  • Kalogeropoulos, N., Andrikopoulos, N.K., & Hassapidou, M. (2004). Dietary evaluation of Mediterranean fish and molluscs pan-fried in virgin olive oil. Journal of the Science of Food and Agriculture, 84 (13), 1750- 1758. https://doi.org/10.1002/jsfa.1878
  • La Rovere, M.T., & Christensen, J.H. (2015). The autonomic nervous system and cardiovascular disease: role of n-3 PUFAs. Vascular Pharmacology, 71, 1-10. https://doi.org/10.1016/j.vph.2015.02.005
  • Özoğul, Y., Özoğul, F., & Alagöz, S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey. Food Chemistry, 103 (1), 217-223. https://doi.org/10.1016/j.foodchem.2006.08.009
  • Paulus, K., Zacharias, R., Robinson, L., & Geidel, H. (1979). Kritische betrachtungen zur Bewetenden Prufung mit skale’’ Als Einem Wesenlichen Verfahren Der Sensorichen Analyse. LWT Food Science and Technology, 12, 52–61.
  • Rahman, S.A., Huah, T.S., Hassan, O., & Daud, N.M. (1995). Fatty acid composition of some Malaysian freshwater fish. Food Chemistry. 54 (1), 45-49. https://doi.org/10.1016/0308-8146(95)92660-C
  • Rasoarahona, J.R.E., Barnathan, G., Bianchini, J.P., & Gaydou, E.M. (2005). Influence of season on the lipid content and fatty acid profiles of three tilapia species (Oreochromis niloticus, O. macrochir and Tilapia rendalli) from Madagascar. Food Chemistry, 91 (4), 683-694. https://doi.org/10.1016/j.foodchem.2004.07.001
  • Shang, T., Liu, L., Zhou, J., Zhang, M., Hu, Q., Fang, M., Wu, Y., Yao, P., & Gong, Z. (2017). Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids Health Disease, 2017, 16:65. https://doi.org/10.1186/s12944-017-0461-2
  • Simopoulos, A.P. (1991). Omega-3 fatty acids in health and disease and in growth and development, a review. American Journal of Clinical Nutrition, 54 (3), 438-463. https://doi.org/10.1093/ajcn/54.3.438
  • Simopoulos, A.P. (2010). The omega-6/omega-3 fatty acid ratio: Health implications. Oilseeds and Fats, Crops and Lipids, 17 (5), 267-275. https://doi.org/10.1684/ocl.2010.0325.
  • Tidball, M.M., Exler, J., Somanchi, M., Williams, J., Kraft, C., Curtis, P., & Tidbal, K.G. (2017). Addressing information gaps in wild-caught foods in the US: Brook trout nutritional analysis for inclusion into the USDA national nutrient database for standard reference. Journal of Food Composition and Analysis, 60, 57-63. https://doi.org/10.1016/j.jfca.2017.03.004.
  • Tokur, B., Çaklı, Ş., & Polat, A. (2006). The quality changes of trout (Oncorhynchus mykiss W., 1792) with a vegetable topping during frozen storage (−18℃). E.U. Journal of Fisheries & Aquatic Sciences, 23 (3-4), 345-350.
  • TUIK, (2018). https://biruni.tuik.gov.tr/medas/?kn=97&locale=tr. Web. September 5, 2019.
  • Turchini, G.M, Hermon, K.M, & Francis, D.S. (2018). Fatty acids and beyond: Fillet nutritional characterization of rainbow trout (Oncorhynchus mykiss) fed different dietary oil sources. Aquaculture, 491, 391-397. https://doi.org/10.1016/j.aquaculture.2017.11.056
  • Ward, O.P, & Singh, A. (2005). Omega-3/6 fatty acids: alternative sources of production. Process Biochemistry, 40 (12), 3627-3652. https://doi.org/10.1016/j.procbio.2005.02.020
APA Yavuzer E (2020). Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. , 106 - 112. 10.22392/actaquatr.603538
Chicago Yavuzer Emre Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. (2020): 106 - 112. 10.22392/actaquatr.603538
MLA Yavuzer Emre Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. , 2020, ss.106 - 112. 10.22392/actaquatr.603538
AMA Yavuzer E Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. . 2020; 106 - 112. 10.22392/actaquatr.603538
Vancouver Yavuzer E Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. . 2020; 106 - 112. 10.22392/actaquatr.603538
IEEE Yavuzer E "Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source." , ss.106 - 112, 2020. 10.22392/actaquatr.603538
ISNAD Yavuzer, Emre. "Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source". (2020), 106-112. https://doi.org/10.22392/actaquatr.603538
APA Yavuzer E (2020). Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. Acta Aquatica Turcica, 16(1), 106 - 112. 10.22392/actaquatr.603538
Chicago Yavuzer Emre Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. Acta Aquatica Turcica 16, no.1 (2020): 106 - 112. 10.22392/actaquatr.603538
MLA Yavuzer Emre Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. Acta Aquatica Turcica, vol.16, no.1, 2020, ss.106 - 112. 10.22392/actaquatr.603538
AMA Yavuzer E Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. Acta Aquatica Turcica. 2020; 16(1): 106 - 112. 10.22392/actaquatr.603538
Vancouver Yavuzer E Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. Acta Aquatica Turcica. 2020; 16(1): 106 - 112. 10.22392/actaquatr.603538
IEEE Yavuzer E "Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source." Acta Aquatica Turcica, 16, ss.106 - 112, 2020. 10.22392/actaquatr.603538
ISNAD Yavuzer, Emre. "Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) With Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source". Acta Aquatica Turcica 16/1 (2020), 106-112. https://doi.org/10.22392/actaquatr.603538