Yıl: 2020 Cilt: 8 Sayı: 4 Sayfa Aralığı: 855 - 863 Metin Dili: Türkçe DOI: 10.24925/turjaf.v8i4.855-863.2989 İndeks Tarihi: 26-10-2020

Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri

Öz:
Küresel kentleşme ve nüfus artışı, gıda atık yönetimini zorlaştırmakta ve atıkların kontrolsüz birşekilde birikmesine neden olmaktadır. Gıda üretim ve tedarik zinciri boyunca oluşan atıkların yüksekprotein içeriklerinden dolayı doğru ve etkin bir şekilde kullanımının ve geri dönüşümününsağlanması hem ülkemizde hem de tüm dünyada her geçen gün önem kazanmaktadır. Gıdaendüstrisinde açığa çıkan yan ürünlerin değerlendirilmesi, yeni fonksiyonel ürünlerin geliştirilmesive endüstriyel boyutta daha büyük bir ekonomik getiri sağlaması açısından önemlidir. Bu doğrultudaproteince zengin bitkisel ve hayvansal atıklardan elde edilen biyoaktif peptitler ön plana çıkmaktadır.Biyoaktif peptitler fonksiyonel özellikler göstermeleri nedeniyle insan sağlığı açısından da büyüköneme sahiptir. Bu derleme kapsamında proteince zengin gıda atıklarından elde edilen biyoaktifpeptitlerin fonksiyonel özellikleri ve insan gastrointestinal sisteminde sergiledikleri biyoyararlanımmekanizmaları üzerinde durulmuştur.
Anahtar Kelime:

Recovery of Bioactive Peptides from Food Wastes and Their Bioavailability Properties

Öz:
Global urbanization and population growth obstruct the food waste management and cause uncontrolled accumulation of wastes. Ensuring the correct and efficient use and recycling of wastes having high protein content and generated throughout the food production and supply chain is becoming more important both in our country and all over the world. The evaluation of by-products released in the food industry is important for the development of new functional products and for greater economic rate of return on industrial scale. In this respect, bioactive peptides obtained from plant/animal wastes and rich in protein come into prominence. Bioactive peptides are also of great importance for human health because of their functional properties. In this review, functional properties of bioactive peptides obtained from protein-rich food wastes and their bioavailability mechanisms in human gastrointestinal system are discussed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Adessi C, Soto C. 2002. Converting a peptide into a drug: strategies to improve stability and bioavailability. Current Medicinal Chemistry, 9(9): 963-978.
  • Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK. 2016. Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98: 244-256.
  • Albenzio M, Santillo A, Caroprese M, Della Malva A, Marino R. 2017. Bioactive peptides in animal food products. Foods, 6(5): 35.
  • Al-Juhaimi F, Ghafoor K, Hawashin MD, Alsawmahi ON, Babiker EE. 2016. Effects of different levels of Moringa (Moringa oleifera) seed flour on quality attributes ofbeef burgers. CyTA-Journal of Food, 14(1): 1 -9.
  • Alvarado Y, Muro C, Illescas J, Díaz MDC, Riera F. 2019. Encapsulation of antihypertensive peptides from whey proteins and their releasing in gastrointestinal conditions. Biomolecules, 9(5): 164.
  • Ambigaipalan P., Shahidi F. 2017. Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. Journal of Functional Foods, 34: 7- 17.
  • Anilkumar P, Badarinath AV., Naveen N, Prasad K, Reddy BRS, Hyndhavi M, Nirosha M. 2011. A rationalized description on study of intestinal barrier, drug permeability and permeation enhancers. Journal of Global Trends in Pharmaceutical Sciences, 2(4): 431 - 449.
  • Bao C, Jiang P, Chai J, Jiang Y, Dan L, Bao W, Yuan L. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International, 120: 130-140.
  • Cai L, Wu X, Zhang Y, Li X, Ma S, Li J. 2015. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. Journal of Functional Foods, 16: 234-242
  • Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Laganà A. 201 6. Recent trends in the analysis of bioactive peptides in milk and dairy products. Analytical and Bioanalytical Chemistry, 408(11): 2677-2685.
  • Chakrabarti S, Guha S, Majumder K. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11): 1738.
  • Chalamaiah M, Ulug SK, Hong H, Wu J. 2019. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal ofFunctional Foods, 58: 123- 129.
  • Chalamaiah M, Yu W, Wu J. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry, 245: 205-222.
  • Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. 2014. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnology Advances, 32(7): 1269-1282.
  • Cicero AF, Fogacci F, Colletti A. 2017. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. British Journal of Pharmacology, 174(11): 1378-1394.
  • Copeland RA. 2013. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemist and pharmacologists. Second Edition., ISBN: 978-1 -118- 48813-3.
  • Cotabarren J, Rosso AM, Tellechea M, García-Pardo J, Rivera JL, Obregón WD, Parisi MG. 2019. Adding value to the chia (Salvia hispanica L.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chemistry, 274: 848-856.
  • Dinçer MT, Erdem ÖA, Kalkan H, Üçok MÇ. 2016. Comparison of recovered carp scales (Cyprinus carpio) gelatin and commercial calf and pork skin gelatins Sazan pulu (Cyprinus carpio) kullanılarak elde edilen jelatin ve ticari dana ve domuz derisi jelatinlerinin kıyaslanması. Ege Journal of Fisheries and Aquatic Sciences, 33(4): 335-341.
  • Faustino M, Veiga M, Sousa P, Costa EM, Silva S, Pintado M. 2019. Agro-food byproducts as a new source of natural food additives, Molecules, 24(6): 1056.
  • Fernández-Tomé S, Hernández-Ledesma B, Chaparro M, Indiano-Romacho P, Bernardo D, Gisbert JP. 2019. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends in Food Science & Technology, 88: 194-206.
  • Fontoura R, Daroit DJ, Corrêa APF, Moresco KS, Santi L, Beys-da-Silva WO, Brandelli A. 2019. Characterization of a novel antioxidant peptide from feather keratin hydrolysates. New Biotechnology, 49: 71 -76.
  • Freitas CS, Vericimo MA da Silva ML da Costa GCV, Pereira PR, Paschoalin VMF, Del Aguila EM. 2019. Encrypted antimicrobial and antitumoral peptides recovered from a protein-rich soybean (Glycine max) by-product. Journal of Functional Foods, 54: 187-198.
  • Grootaert C, Voorspoels S, Jacobs G, Matthijs B, Possemiers S, Van der Saag H, Lucey A. 2019. Clinical aspects of egg bioactive peptide research: a review. International Journal of Food Science & Technology, 54: 1967-1975.
  • Görgüç A, Bircan C, Yılmaz FM. 2019. Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283: 637- 645.
  • Horner K, Drummond E, Brennan L. 2016. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective. Nutrition Research Reviews, 29(1): 91 -101.
  • Hou H, Fan Y, Li B, Xue C, Yu G, Zhang Z, Zhao X. 2012. Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chemistry, 134(2): 821 -828.
  • Işık NO. 2018. Manda derisi budama atıklarından farklı yöntemlerle jelatin üretilmesi ve manda jelatininin reolojik özelliklerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 15(3): 44-51.
  • Karami Z. Akbari-adergani B. 2019. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2): 535-547.
  • Kim HY, Hwang IG, Kim TM, Park DS, Kim JH, Kim DJ, Jeong HS. 2011. Antioxidant and angiotensin converting enzyme I inhibitory activity on different parts of germinated rough rice. Journal of the Korean Society of Food Science and Nutrition, 40(6): 775-780.
  • Lammi C, Aiello G, Boschin G, Arnoldi A. 2019. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods, 55: 135-145.
  • Laso J, Margallo M, García-Herrero I, Fullana P, Bala A, Gazulla C, Aldaco R. 2018. Combined application of life cycle assessment and linear programming to evaluate food waste-to-food strategies: Seeking for answers in the nexus approach. Waste Management, 80: 186-197.
  • Lee HJ. 2002. Protein drug oral delivery: The recent progress, Archives of Pharmacal Research, 25(5): 572.
  • Lee SY, Hur SJ. 2017. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chemistry, 228: 506-517.
  • Lemes A, Sala L, Ores J, Braga A, Egea M, Fernandes K. 2016. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences, 17(6): 950.
  • Maestri E, Marmiroli M, Marmiroli N. 2016. Bioactive peptides in plant-derived foodstuffs. Journal of Proteomics, 147: 140-155.
  • Maher S, Mrsny RJ, Brayden DJ. 2016. Intestinal permeation enhancers for oral peptide delivery. Advanced Drug Delivery Reviews, 106: 277-319.
  • Marciniak A, Suwal S, Naderi N, Pouliot Y, Doyen A. 2018. Enhancing enzymatic hydrolysis of food proteins andproduction of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, 80: 187-198.
  • Mazorra-Manzano MA, Ramírez-Suarez JC, Ya da RY. 2018. Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition, 58(13): 2147-2163.
  • Mohan A, Rajendran SR, He QS, Bazinet L, Udenigwe CC. 2015. Encapsulation of food protein hydrolysates and peptides: a review. RSC Advances- Royal Society of Chemistry, 5(97): 79270-79278.
  • Nguyen TT, Zhang W, Barber AR, Su P, He S. 2016. Microwave-intensified enzymatic deproteinization of Australian rock lobster shells (Jasus edwardsii) for the efficient recovery of protein hydrolysate as food functional nutrients. Food and Bioprocess Technology, 9(4): 628-636.
  • Niu Z. Conejos-Sanchez I, Griffin BT, O’Driscoll CM, Alonso MJ. 2016. Lipid-based nanocarriers for oral peptide delivery. Advanced Drug Delivery Reviews, 106: 337-354.
  • Nongonierma AB, FitzGerald RJ. 2016. Strategies for the discovery, identification and validation of milk proteinderived bioactive peptides. Trends in Food Science & Technology, 50: 26-43.
  • Otağ FB, Hayta M. 2013. Gıdalarda biyoaktif peptit oluşumu ve aktivitesi üzerine ısıl işlem ve fermantasyonun etkileri. GIDA, 38(5): 307-314.
  • Prandi B, Faccini A, Lambertini F, Bencivenni M, Jorba M, Van Droogenbroek B, Sforza S. 2019. Food wastes from agrifood industry as possible sources of proteins: A detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chemistry, 286: 567-575.
  • Rizzello CG, Tagliazucchi D, Babini E, Rutella GS, Saa DLT, Gianotti A. 2016. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, 27: 549-569.
  • Rodsamran P, Sothornvit R. 2018. Physicochemical and functional properties of protein concentrate from byproduct of coconut processing. Food Chemistry, 241: 364-371
  • Roslan J, Kamal SMM, Yunos KFM, Abdullah N. 2018. Evaluation on performance of dead-end ultrafiltration membrane in fractionating tilapia by-product protein hydrolysate. Separation and Purification Technology, 195: 21 -29.
  • Sánchez A, Vázquez A. 2017. Bioactive peptides: A review. Food Quality and Safety, 1(1): 29-46.
  • Segura-Campos M, Chel-Guerrero L, Betancur-Ancona D, Hernandez-Escalante VM. 2011 . Bioavailability of bioactive peptides. Food Reviews International, 27(3): 213-226.
  • Shen W, Matsui T. 2017. Current knowledge of intestinal absorption ofbioactive peptides. Food & Function, 8(12): 4306-4314
  • Shen W, Matsui T. 2019. Intestinal absorption of small peptides: A review, International Journal ofFood Science & Technology, 54(6): 1942-1948.
  • Song S, Li S, Fan L, Hayat K, Xiao Z, Chen L, Tang Q. 2016. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction. Food Chemistry, 208: 81 -88.
  • Surasani VKR, Kudre T, Ballari RV. 2018. Recovery and characterization of proteins from pangas (Pangasius pangasius) processing waste obtained through pH shift processing. Environmental Science and Pollution Research, 25(12): 11987-11998.
  • Tan Y, Gao H, Chang SK, Bechtel PJ, Mahmoud BS. 2019. Comparative studies on the yield and characteristics of myofibrillar proteins from catfish heads and frames extracted by two methods for making surimi-like protein gel products. Food Chemistry, 272: 133-140.
  • Tibin IM, Mustafa MA. 2018. Quality attributes of beef burger patties extended with soybean flour and watermelon seed cakes, Journal of Veterinary Medicine and Animal Production, 8(1): 60-68.
  • Toldrá F, Reig M, Aristoy M.C, Mora L. 2018. Generation of bioactive peptides during food processing. Food Chemistry, 267: 395-404.
  • Tu M, Cheng S, Lu W, Du M. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry, 105: 7-17.
  • Udenigwe CC, Fogliano V. 2017. Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin?. Journal of Functional Foods, 35: 9-12.
  • Vermeirssen V, Van Camp J, Verstraete W. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition, 92(3): 357-366.
  • Waglay A, Karboune S. 2017. A novel enzymatic approach based on the use of multi-enzymatic systems for the recovery of enriched protein extracts from potato pulp. Food Chemistry, 220: 313-323.
  • Wang B, Xie N, Li B. 2019. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. Journal of Food Biochemistry, 43(1): e12571.
  • Wei CK, Thakur K, Liu DH, Zhang JG, Wei ZJ. 2018. Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products. Food Chemistry, 263: 186-193
  • Xie N, Wang B, Jiang L, Liu C, Li B. 2015. Hydrophobicity exerts different effects on bioavailability and stability of antioxidant peptide fractions from casein during simulated gastrointestinal digestion and Caco-2 cell absorption. Food Research International, 76: 518-526.
  • Xing L, Liu R, Cao S, Zhang W, Guanghong Z. 2019. Meat protein based bioactive peptides and their potential functional activity: a review. International Journal of Food Science & Technology, 54(6): 1956-1966.
  • Xu Q, Hong H, Wu J, Yan X. 2019. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology, 86: 399-411.
  • Yanar Y, Gökçin M. 2016. Extraction and characterization of gelatin from mackerel (Scomber scombrus) and sea bass (Dicentrarchus labrax) bones. Turkish Journal of Agriculture-Food Science and Technology, 4(9): 728- 733.
  • Yang S, Mao X.Y, Li FF, Zhang D, Leng XJ, Ren FZ, Teng GX. 2012. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. European Food Research and Technology, 235(1): 91 -97.
APA GENÇDAĞ E, Görgüç A, Yılmaz F (2020). Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. , 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
Chicago GENÇDAĞ Esra,Görgüç Ahmet,Yılmaz Fatih Mehmet Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. (2020): 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
MLA GENÇDAĞ Esra,Görgüç Ahmet,Yılmaz Fatih Mehmet Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. , 2020, ss.855 - 863. 10.24925/turjaf.v8i4.855-863.2989
AMA GENÇDAĞ E,Görgüç A,Yılmaz F Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. . 2020; 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
Vancouver GENÇDAĞ E,Görgüç A,Yılmaz F Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. . 2020; 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
IEEE GENÇDAĞ E,Görgüç A,Yılmaz F "Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri." , ss.855 - 863, 2020. 10.24925/turjaf.v8i4.855-863.2989
ISNAD GENÇDAĞ, Esra vd. "Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri". (2020), 855-863. https://doi.org/10.24925/turjaf.v8i4.855-863.2989
APA GENÇDAĞ E, Görgüç A, Yılmaz F (2020). Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 8(4), 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
Chicago GENÇDAĞ Esra,Görgüç Ahmet,Yılmaz Fatih Mehmet Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 8, no.4 (2020): 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
MLA GENÇDAĞ Esra,Görgüç Ahmet,Yılmaz Fatih Mehmet Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.8, no.4, 2020, ss.855 - 863. 10.24925/turjaf.v8i4.855-863.2989
AMA GENÇDAĞ E,Görgüç A,Yılmaz F Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2020; 8(4): 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
Vancouver GENÇDAĞ E,Görgüç A,Yılmaz F Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2020; 8(4): 855 - 863. 10.24925/turjaf.v8i4.855-863.2989
IEEE GENÇDAĞ E,Görgüç A,Yılmaz F "Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 8, ss.855 - 863, 2020. 10.24925/turjaf.v8i4.855-863.2989
ISNAD GENÇDAĞ, Esra vd. "Gıda Atıklarından Biyoaktif Peptitlerin Geri Kazanımı ve Biyoyararlanım Özellikleri". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 8/4 (2020), 855-863. https://doi.org/10.24925/turjaf.v8i4.855-863.2989