Yıl: 2020 Cilt: 26 Sayı: 2 Sayfa Aralığı: 301 - 311 Metin Dili: Türkçe DOI: doi: 10.5505/pajes.2019.51333 İndeks Tarihi: 12-10-2020

İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı

Öz:
İndüksiyon Motor’lar (IM) farklı yüklerde çalışırken nominal hızıngerisinde kaldıkları bilinmektedir. Bu bağlamda motor sürücüleri önemkazanmaktadır. Bu konu geçmişten günümüze pek çok bilim insanınındikkatini çekmiştir. Bu çalışmada, IM sürücüsü başarımını arttırmakamacıyla gerçekleştirilmiştir. IM sürücüsü de Skaler Denetim (SD)yöntemi kullanılmıştır. SD’de değişken frekanslı kontrol tekniği tercihedilmiştir. Böylece farklı yüklerde çalışan IM’nin nominal hızdaçalışabilmesi için frekans değiştirilecektir. Frekans değişimini sağlamakiçin Gregory-Newton Interpolasyon (GNI) ve Lagrange Interpolasyon(LI) çözüm teknikleri kullanılmıştır. Bu iki farklı çözüm yöntemi, farklıyüklere karşılık nominal hız için gereken frekansı hesaplayaraksürücüye iletmektedir. Çalışma Matlab/Simulink programında testedilmiştir. Testlerden elde edilen sonuçlar iki interpolasyon tekniğininde başarılı sonuçlar ürettiğini göstermiştir. Benzer sonuçlar üreten buiki teknikte; GNI tekniğinin farklı yüklere cevap verme süresi yaklaşık0.041-0.065 s arasında iken, LI tekniğinin cevap verme süresi 0.003 s’dir.Çalışma sonunda Oransal-Integral (PI) denetleyici ile performansincelemesi yapılmıştır. Sonuçlar göstermiştir ki, önerilen teknikler farklıhız ve yük değişimlerine hızlı cevap vermiş, daha hassas ve kararlı birhız denetimi sağlamıştır.
Anahtar Kelime:

The use of interpolation techniques in induction motor control

Öz:
Induction Motors (IM) are known to remain behind the rated speed when operating at different loads. In this context, motor drivers gain importance. This subject has attracted the attention of many scientists from past to present. In this study, in order to increase the performance of IM driver was performed. Scalar Control (SC) method was used in IMD. The variable frequency control technique was preferred in SC. Thus, the frequency will be changed so that the IM operating in different loads can operate at nominal speed. Gregory-Newton Interpolation (GNI) and Lagrange Interpolation (LI) solution techniques were used to ensure frequency variation. These two different solution methods calculate the frequency required for the nominal speed in response to different loads to the driver. The study was tested in the Matlab/Simulink program. The results obtained from the tests showed that two interpolation techniques produced successful results. In these two techniques producing similar results; The response time of the GNI technique to the different loads is between 0.041-0.065 s, while the response time of the LI technique is 0.003 s. At the end of the study with Proportional-Integral (PI) controller the performance analysis was performed. The results showed that the proposed techniques gave quick response to different speed and load changes, resulting in more precise and stable speed control.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Trzynadlowski AM. Control of Induction Motors. 1nd ed. London, UK, Academic Press, 2001.
  • [2] Krishnan R. Electric Motor Drives-Modeling Analysis and Control. 1nd ed. NJ, USA, Prentice-Hall, 2001.
  • [3] Patel, S. Speed Control of Three-Phase Induction Motor Using Variable Frequency Drive, 1nd ed. Long Beach. California State University, 2018.
  • [4] Kesler, S. "Performance analysis of different PWM techniques on V/f-based speed control with adjustable boost voltage application for induction motors". Pamukkale University Journal of Engineering Sciences, 24(5), 797-808, 2018.
  • [5] Bakshi UA, Bakshi VU. Electrical Technology. 1nd ed. Pune, Technical Publications, 2009.
  • [6] Saghafinia A, Wooi H, Ping H, Rahman MA. “High performance induction motor drive using hybrid fuzzy-pi and pi controllers: A review”. International Review of Electrical Engineering, 5(5), 2000-2012, 2010.
  • [7] Bose BK. Power Electronics and AC Drives. Englewood Cliffs, NJ, Prentice-Hall, 1986.
  • [8] Halim A, Rizal MF. Single Inverted Pendulum with Novel Hardware. Doctoral Dissertation, Murdoch University, Perth, Australia 2018.
  • [9] Boussak M, Jarray K. “A high-performance sensorless indirect stator flux orientation control of induction motor drive”. IEEE Transactions on Industrial Electronics, 53(1), 41-49, 2006.
  • [10] Zhang G. “Speed control of two-inertia system by PI/PID control”. IEEE Transactions on Industrial Electronics, 47(3), 603-609, 2000.
  • [11] Jain JK, Ghosh S, Maity S, Dworak P. “PI controller design for indirect vector controlled induction motor: A decoupling approach”. ISA Transactions, 70, 378-388, 2017.
  • [12] Åström KJ, Tore H. “The future of PID control”. Control Engineering Practice, 9(11), 1163-1175, 2001.
  • [13] Tang KS, Man KF, Chen G, Kwong S. “An optimal fuzzy PID controller”. IEEE Transactions on Industrial Electronics, 48(4), 757-765, 2001.
  • [14] Ammar HH, Azar AT, Tembi TD, Tony K. “Design and implementation of fuzzy PID controller into multi agent smart library system prototype”. International Conference on Advanced Machine Learning Technologies and Applications, Cairo, Egypt, 22-24 February 2018.
  • [15] Bermudez M, Gonzalez-Prieto I, Barrero F, Guzman H, Duran MJ, Kestelyn X. “Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives”. IEEE Transactions on Industrial Electronics, 64(2), 902-911, 2017.
  • [16] Odhano S, Bojoi R, Formentini A, Zanchetta P, Tenconi A. “Direct flux and current vector control for induction motor drives using model predictive control theory”. IET Electric Power Applications, 11(8), 1483-1491, 2017.
  • [17] Wang K, Robert LD, Noor AB. “Improvement of back-EMF self-sensing for induction machines when using deadbeatdirect torque and flux control”. IEEE Transactions on Industry Applications, 53(5), 4569-4578, 2017.
  • [18] Zhang Y, Zhonggang Y, Guoyin L, Jing L, Xiangqian T. “A novel speed estimation method of induction motors using real-time adaptive extended Kalman filter”. Journal of Electrical Engineering & Technology, 13(1), 287-297, 2018.
  • [19] Xin Z, Zhao R, Blaabjerg F, Zhang L, Loh PC. “An improved flux observer for field-oriented control of induction motors based on dual second-order generalized integrator frequency-locked loop”. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(1), 513-525, 2017.
  • [20] Ehsani M, et al. Modern Electric, Hybrid Electric and Fuel Cell Vehicles. 3nd ed UK, CRC Press, 2018.
  • [21] Zhou Z, et al. “Neural network-based discrete-time command filtered adaptive position tracking control for induction motors via backstepping”. Neurocomputing, 260, 203-210, 2017.
  • [22] Wang N, Haisheng Y, Xudond L. “DTC of induction motor based on adaptive sliding mode control”. Chinese Control and Decision Conference (CCDC), IEEE, Shenyang, China, 9-11 June 2018.
  • [23] Lftisi F, Rahman MA. “A novel finite element controller map for intelligent control of induction motors”. Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2017 8th IEEE Annual, Vancouver, BC, Canada, 3-5 October 2017.
  • [24] Nozaki Y, Takafumi K, Eisuke M. “Analysis of linear induction motors for HSST and linear metro using finite difference method”. IEEE Conference on Linear Drivers and Industry Applications, Kobe, Hyogo, Japan, 25-28 September 2005.
  • [25] Zhao J, Bose BK. “Evaluation of membership functions for fuzzy logic controlled induction motor drive”. 28th Annual Conference of the Industrial Electronics Society, Sevilla, Spain, 5-8 November 2002.
  • [26] Rashed M, Peter M, Stronach MA. “Nonlinear adaptive state-feedback speed control of a voltage-fed induction motor with varying parameters”. IEEE Transactions on Industry Applications, 42(3), 723-732, 2006.
  • [27] Paice DA. “Induction motor speed control by stator voltage control”. IEEE Transactions on Power Apparatus and Systems, 2, 585-590, 1968.
  • [28] Feng Y, Zhou M, Han F, Yu X. “Speed control of induction motor servo drives using terminal sliding-mode controller”. Advances in Variable Structure Systems and Sliding Mode Control-Theory and Applications, 115, 341-356, 2017.
  • [29] Guo Y, Wang X, Guo Y, Deng W. “Speed-sensorless direct torque control scheme for matrix converter driven induction motor”. The Journal of Engineering, 13, 432-437, 2018.
  • [30] Lin FJ, Shen PH, Hsu SP. “Adaptive backstepping sliding mode control for linear induction motor drive”. IEE Proceedings-Electric Power Applications, 49(3), 184-194, 202.
  • [31] Kubota H, Kouki M, Takayoshi N. “DSP-based speed adaptive flux observer of induction motor”. IEEE Transactions on Industry Applications, 29(2), 344-348, 1993.
  • [32] Holtz J. “Sensorless control of induction motor drives”. Proceedings of the IEEE, 90(8), 1359-1394, 2002.
  • [33] Li J, Hai-Peng R, Yan-Ru Z. “Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers”. IEEE Transactions on Industry Applications, 51(1), 712-720, 2015.
  • [34] Irmak E, Vadi S. “Asenkron motorlarda frekans değişimi ile hiz kontrolü deneyinin bilgisayar üzerinden gerçekleştirilmesi”. Journal of The Faculty of Engineering and Architecture of Gazi University, 21(1), 57-62, 2011.
  • [35] Otkun Ö, Doğan RÖ, Akpınar AS. “Neural network based scalar speed control of linear permanent magnet synchronous motor”. Journal of the Faculty of Engineering & Architecture of Gazi University, 30(3), 395-404, 2015.
  • [36] Kumar R, Das S, Syam P, Chattopadhyay AK. “Review on model reference adaptive system for sensorless vector control of induction motor drives”. IET Electric Power Applications, 9(7), 496-511, 2015.
  • [37] Rao GM, Srikanth G. “Comparative study of maximum torque control by pi ann of induction motor”. International Journal of Applied Engineering Research, 13(7), 4620-4625, 2018.
  • [38] Sapkota K, Pradhan A, Singh AK, Rai P. “Speed control of single phase induction motor using fuzzy logic controller”. Advances in Communication, Devices and Networking, 462, 719-727, 2018.
  • [39] Sharma K, Anubhav A, Shuvabrata B. “Fuzzy logic controlled variable frequency drives”. Harmony Search and Nature Inspired Optimization Algorithms, Singapore, Springer, 1, 1153-1164, 2019.
  • [40] Orlowska-Kowalska T, Dybkowski M, Szabat K. “Adaptive sliding-mode neuro-fuzzy control of the twomass induction motor drive without mechanical sensors”. IEEE Transactions on Industrial Electronics, 57(2), 553-564, 2010.
  • [41] Hui L, Yunfei L, Xin D, Huajug Z. “Optimization of adaptation gains of full-order flux observer in sensorless induction motor drives using genetic algorithm”. Information Technology Journal, 8(4), 577-582, 2009.
  • [42] Kesler S, Akpınar AS, Saygin A. "Bilezikli asenkron makinelerde anlık yüksek moment ve hız denetimi için rotor devresine bulanık mantık tabanlı güç enjeksiyonu”. Pamukkale University Journal of Engineering Sciences, 15(1), 13-23, 2009.
  • [43] Stoer J, Roland B. Introduction to Numerical Analysis. 1nd ed. USA, Springer Science & Business Media, 2013.
  • [44] Atkinson KE. An Introduction to Numerical Analysis. 2nd ed. USA, John Wiley & Sons, 2008.
  • [45] Greenspan D. Numerical Analysis. 2nd ed. Boca Raton, FL, CRC Press, 2018.
  • [46] Lyshevski SE. Electromechanical Systems, Electric Machines, and Applied Mechatronics, 1nd ed. London, England, CRC Press, 2018.
  • [47] Kobayashi H, Seo Y, Ogawa K, Horikawa K, Tanigaki K. “Numerical analysis and experiment for stress wave propagation in two connected cylindrical bodies with different cross-sectional area and same mechanical impedance”. European Physical Journal Web of Conferences, Arcachon, France, 9-14 September 2018.
  • [48] İzol R, Gürel MA, Pekgökgöz RK, Avcil F. “Dikdörtgen payandalı yüksek yığma duvarların düzlem dışı deprem dayanımlarının yaklaşık hesabı”. Journal of the Faculty of Engineering and Architecture of Gazi University, 18(2), 1007-1024, 2018.
  • [49] Ekşim A, Yetik H. “Audio quality enhancement for ETSI TS 102 361 digital mobile radio standard compliant radios using volume optimization and better forward error correction scheme”. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2), 641-648, 2018.
  • [50] Bianco V, Scarpa F, Tagliafico LA. “Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector”. Renewable Energy, 116, 9-21, 2018.
  • [51] Hu D, Xu W, Dian R, Liu Y, Zhu J.“Loss minimization control of linear induction motor drive for linear metros”. IEEE Transactions on Industrial Electronics, 65(9), 6870-6880, 2018.
  • [52] Zhou Y, Li H, Liu R, Mao J. “Continuous voltage vector model-free predictive current control of surface mounted permanent magnet synchronous motor”. IEEE Transactions on Energy Conversion, 1(1), 899-908, 2018.
  • [53] Le Flohic J, et al. “Model-based method for feed drive tuning applied to serial machine tool”. The International Journal of Advanced Manufacturing Technology, 95(1-4), 735-745, 2018.
  • [54] Moons C, Moor BD. “Parameter identification of induction motor drives”. Automatica, 31(8), 1137-1147, 1995.
  • [55] Cirrincione M, Pucci M, Cirrincione G, Capolino GA. “An adaptive speed observer based on a new total least-squares neuron for induction machine drives”. IEEE Transactions on Industry Applications, 42(1), 89-104, 2006.
  • [56] Li Y, Lin H, Huang H, Chen C, Yang H. “Analysis and performance evaluation of an efficient power-fed permanent magnet adjustable speed drive”. IEEE Transactions on Industrial Electronics, 66(1), 784-794, 2018.
  • [57] Torkaman H, Ebrahim A, Mohammad ST. “New doublelayer-per-phase isolated switched reluctance motor: concept, numerical analysis, and experimental confirmation”. IEEE Transactions on Industrial Electronics, 59(2), 830-838, 2012.
  • [58] Pervin S, Siri Z, Uddin MN. “Newton-Raphson based computation of id in the field weakening region of IPM motor incorporating the stator resistance to improve the performance”. IEEE Industry Applications Society Annual Meeting, 6, 1-6, 2012.
  • [59] Merabet A, Ouhrouche M, Bui RT. “Neural generalized predictive control with reference control model for an induction motor drive”. Control & Intelligent Systems, 36, 144-152, 2008.
  • [60] Xinghe F, Zou J. “Numerical analysis on the magnetic field of hybrid exciting synchronous generator”. IEEE Transactions on Magnetics, 45(10), 4590-4593, 2009.
  • [61] Wang H, et al. “Improved deadbeat predictive current control strategy for permanent magnet motor drives”. 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 21-23 June 2011.
  • [62] Abu-Rub H, Iqbal A, Guzinski J. High Performance Control of AC Drives with MATLAB/Simulink Models. United Kingdom, Wiley, 2012.
  • [63] Enemuoh FO, Okafor EE, Onuegbu JC, Agu VN. “Modelling, simulation and performance analysis of a variable frequency drive in speed control of induction motor”. International Journal of Engineering Inventions, 3(5), 36-41, 2103.
APA Otkun Ö (2020). İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. , 301 - 311. doi: 10.5505/pajes.2019.51333
Chicago Otkun Özcan İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. (2020): 301 - 311. doi: 10.5505/pajes.2019.51333
MLA Otkun Özcan İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. , 2020, ss.301 - 311. doi: 10.5505/pajes.2019.51333
AMA Otkun Ö İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. . 2020; 301 - 311. doi: 10.5505/pajes.2019.51333
Vancouver Otkun Ö İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. . 2020; 301 - 311. doi: 10.5505/pajes.2019.51333
IEEE Otkun Ö "İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı." , ss.301 - 311, 2020. doi: 10.5505/pajes.2019.51333
ISNAD Otkun, Özcan. "İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı". (2020), 301-311. https://doi.org/doi: 10.5505/pajes.2019.51333
APA Otkun Ö (2020). İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(2), 301 - 311. doi: 10.5505/pajes.2019.51333
Chicago Otkun Özcan İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26, no.2 (2020): 301 - 311. doi: 10.5505/pajes.2019.51333
MLA Otkun Özcan İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.26, no.2, 2020, ss.301 - 311. doi: 10.5505/pajes.2019.51333
AMA Otkun Ö İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020; 26(2): 301 - 311. doi: 10.5505/pajes.2019.51333
Vancouver Otkun Ö İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2020; 26(2): 301 - 311. doi: 10.5505/pajes.2019.51333
IEEE Otkun Ö "İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26, ss.301 - 311, 2020. doi: 10.5505/pajes.2019.51333
ISNAD Otkun, Özcan. "İndüksiyon motor denetiminde interpolasyon tekniklerinin kullanımı". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 26/2 (2020), 301-311. https://doi.org/doi: 10.5505/pajes.2019.51333