Zeynel CEBECİ
(Çukurova Üniversitesi, Biyometri ve Genetik Bölümü, Adana, Türkiye)
Yıl: 2020Cilt: 3Sayı: 1ISSN: 2636-8129Sayfa Aralığı: 11 - 27İngilizce

110 0
fcvalid: An R Package for Internal Validation of Probabilistic and Possibilistic Clustering
In exploratory data analysis and machine learning, partitioning clustering is a frequently used unsupervised learning technique for finding the meaningful patterns in numeric datasets. Clustering aims to identify and classify the objects or the cases in datasets in practice. The clustering quality or the performance of a clustering algorithm is generally evaluated by using the internal validity indices. In this study, an R package named 'fcvalid' is introduced for validation of fuzzy and possibilistic clustering results. The package implements a broad collection of the internal indices which have been proposed to validate the results of fuzzy clustering algorithms. Additionally, the options to compute the generalized and extended versions of the fuzzy internal indices for validation of the possibilistic clustering are also included in the package.
DergiAraştırma MakalesiErişime Açık
  • [1] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.
  • [2] R. Krishnapuram, J. Keller, “A possibilistic approach to clustering”, IEEE Transactions on Fuzzy Systems, vol. 1, pp. 98-110, 1993.
  • [3] R. Krishnapuram, J. Keller, “The possibilistic c-means algorithm: Insights and recommendations”, IEEE Transactions on Fuzzy Systems, vol. 4, pp. 385-393, 1996.
  • [4] N.R. Pal, K. Pal, J.C. Bezdek, “A mixed c-means clustering model”, Proc. of the 6th IEEE Int. Conf. on Fuzzy Systems, vol. 1, pp. 11-21, 1997.
  • [5] N.R. Pal, K. Pal, J.M. Keller, J.C. Bezdek, “A possibilistic fuzzy c-means clustering algorithm”, IEEE Transactions on Fuzzy Systems, vol. 13, no. 4, pp. 517-530, 2005.
  • [6] K.L. Wu, M.S. Yang, “A cluster validity index for fuzzy clustering”, Pattern Recognition Letters, vol. 26, no. 9, pp. 1275-1291, 2005.
  • [7] X. Wu, B. Wu, J. Sun, H. Fu, “Unsupervised possibilistic fuzzy clustering”, J of Information & Computational Science, vol. 7, no. 5, pp. 1075-1080, 2010.
  • [8] M. R. Rezaee, B. P. Lelieveldt, J. H. Reiber, “A new cluster validity index for the fuzzy c-mean”, Pattern Recognition Letters, vol. 19, no. 3, pp. 237-246, 1998.
  • [9] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “On clustering validation techniques”, J of Intelligent Information Systems, vol. 17, no. 2–3, pp. 107-145, 2001.
  • [10] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “Cluster validity methods: Part I”, ACM Sigmod Record, vol. 31, no. 2, pp. 40-45, 2002.
  • [11] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “Cluster validity methods: Part II”, ACM Sigmod Record, vol. 31, no. 3, pp. 19-27, 2002.
  • [12] A.K. Jain, & R.C. Dubes. Algorithms for Clustering Data. Englewood Cliffs: Prentice Hall, 1988.
  • [13] J.C. Bezdek, “Cluster validity with fuzzy sets”, J Cybernetics, vol. 3, no. 3, pp. 58-72, 1974.
  • [14] I. Gath, A.B. Geva, “Unsupervised optimal fuzzy clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 773-780, 1989.
  • [15] Y. Fukuyama, M. Sugeno, “A new method of choosing the number of cluster for the fuzzy cmeans method”, Proc. of the 5th Fuzzy Systems Symp., pp. 247-250, 1989.
  • [16] X.L. Xie, G. Beni, “A validity measure for fuzzy clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841-847, 1991.
  • [17] R. Krishnapuram, C-P. Freg, “Fitting an unknown number of lines and planes to image data through compatible cluster merging”, Pattern Recognition, vol. 25, pp. 385-400, 1992.
  • [18] S.H. Kwon, “Cluster validity index for fuzzy clustering”, Electronics Letters, vol. 34, no. 22, pp. 2176-2177, 1998.
  • [19] A.M. Bensaid, L.O. Hall, J.C. Bezdek, L.P. Clarke, M.L. Silbiger, J.A. Arrington, R.F. Murtagh, “Validity-guided (re)clustering with applications to image segmentation”, IEEE Transactions on Fuzzy Systems, vol. 4, no.2, pp. 112-123, 1996.
  • [20] R.N. Dave, “Validating fuzzy partitions obtained through c-shells clustering”, Pattern Recognition Letters, vol. 17, pp. 613-623, 1996.
  • [21] M.R. Rezaee, B.P. Lelieveldt, J.H. Reiber, “A new cluster validity index for the fuzzy c-mean”, Pattern Recognition Letters, vol. 19, no. 3, pp. 237-246, 1998.
  • [22] N. Zahid, M. Limouri, A. Essaid, “A new cluster-validity for fuzzy clustering”, Pattern Recognition, vol. 32, no. 7, pp. 1089-1097, 1999.
  • [23] M.Y. Chen, D.A. Linkens, “Rule-base self-generation and simplification for data-driven fuzzy models”, Fuzzy Sets and Systems, vol. 142, no. 2, pp. 243-265, 2004. [24] M.K. Pakhira, S. Bandyopadhyay, U. Maulik, “Validity index for crisp and fuzzy clusters”,
  • Pattern Recognition, vol. 37, no. 3, pp. 487-501, 2004.
  • [25] Y. Tang, F. Sun, Z. Sun, “Improved validation index for fuzzy clustering”, Proc. - The American Control Conference,IEEE, pp. 1120-1125, 2005.
  • [26] R.J.G.B. Campello, E.R. Hruschka, “A fuzzy extension of the silhouette width criterion for cluster analysis”, Fuzzy Sets and Systems, vol. 157, no. 21, pp. 2858-2875, 2006.
  • [27] V. Schwaemmle, O.N. Jensen, “A simple and fast method to determine the parameters for fuzzy c-means cluster validation”, 2010. [Online]. Available: http://arxiv.org/abs/1004.1307v1. [Accessed: 24-Dec-2019].
  • [28] A. Chakrabarty, An Investigation of Clustering Algorithms and Soft Computing Approaches for Pattern Recognition. PhD. Thesis, Assam Univ., India, 116 p., 2010. [Online]. Available: http://shodhganga.inflibnet.ac.in/bitstream/10603/93443/16/16_chapter%208.pdf [Accessed: 24- Dec-2019].
  • [29] Z. Cebeci, A.T. Kavlak, F. Yildiz, “Validation of fuzzy and possibilistic clustering results,” Proc. - International Artificial Intelligence and Data Processing Symposium IDAP 2017, IEEE, pp. 1-7, 2017. doi: 10.1109/IDAP.2017.8090183
  • [30] H. Wickham, J. Hester, W. Chang, “devtools: Tools to Make Developing R Packages Easier”, R package version 2.2.1, 2019. [Online]. Available: https://CRAN.Rproject.org/package=devtools, [Accessed: 24-Dec-2019].
  • [31] R. Core Team, “R: A language and environment for statistical computing”, R Foundation for Statistical Computing Vienna Austria, 2017.
  • [32] Y. Xie, J.J. Allaire, G. Grolemund, G., R Markdown: The Definitive Guide. Chapman and Hall/CRC, 2018. [Online]. Available: https://bookdown.org/yihui/rmarkdown, [Accessed: 24- Dec-2019].
  • [33] E. Anderson, “The Irises of the Gaspé Peninsula”, Bull. Amer. Iris Soc., vol. 59, pp. 2-5, 1935.
  • [34] Z. Cebeci, F. Yildiz, A.T. Kavlak, C. Cebeci, H. Onder, “ppclust: Probabilistic and Possibilistic Cluster Analysis”, R package version 0.1.3, 2019. [Online]. Available: https://CRAN.R-project.org/package=ppclust, [Accessed: 24-Dec-2019].

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.