Yıl: 2020 Cilt: 0 Sayı: 18 Sayfa Aralığı: 840 - 849 Metin Dili: Türkçe DOI: 10.31590/ejosat.685702 İndeks Tarihi: 13-10-2020

Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri

Öz:
Selenyumun (Se) özellikle abiyotik stres koşullarındaki bitkilerde antioksidan rol oynamakla birlikte biyofortikasyonda yeralmaktadır. Düşük dozlarda büyüme ve gelişmeyi teşvik etmekte buna karşın yüksek dozlarda toksik etkide bulunmaktadır. Buderlemede selenyumun tuzluluk, yüksek sıcaklık ve kuraklık gibi stres koşullarındaki fizyolojik etkileri, topraktaki yarayışlılığı vealım mekanizması üzerinde yoğunlaşılmıştır. Toprakların selenyum içeriğinin, toprak tekstürü, organik madde, redoks potansiyeli, pHve kil içeriğine bağlı olduğu belirlenmiştir. Bitkilerin selenat ve selenit gibi inorganik formdaki selenyum ile selenosistein veselenometionin gibi organik formdaki selenyumu aldığı görülmüştür. Selenyum alımı ve metabolizmasının bitki türüne, büyümedönemine ve bitki organına bağlı olarak değişebilir. Düşük dozlarda selenyumun selenoprotein sentezini düzenlediği, antioksidanfonksiyonunu artırdığı ve bitkileri sıcaklık, kuraklık, UV-B, tuzluluk ve ağır metal stresi gibi çeşitli abiyotik streslere karşı koruduğubelirlenmiştir.
Anahtar Kelime:

The Physiological Effects and Metabolism of Selenium in Abiotic Stress Conditions in Plants

Öz:
Selenium (Se) plays an antioxidant role especially in plants under abiotic stress conditions. At the same time this element is included in biofortification. It promotes growth and development at low doses, but at high doses it is toxic. This review focuses on the physiological effects of selenium under stress conditions such as salinity, high temperature and drought, its availability in soil and the mechanism of uptake. It was determined that the selenium content of soils is dependent on soil texture, organic matter, redox potential, pH and clay content. The plants can uptake organic form of selenium such as selenocysteine and selenomethionin and inorganic selenium forms such as selenate and selenite. Selenium intake and metabolism can vary depending on the plant species, growth period and plant organ. It was emphasized that Se regulates the synthesis of selenoprotein, increases the antioxidant function and protects plants against various abiotic stresses such as temperature, drought, UV-B, salinity and heavy metal stres at low selenium concentrations.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Bocchini, M., D’Amato, R., Ciancaleoni, S., Fontanella, M. C., Palmerini, C. A., Beone, G. M., Onofri A., Negri V., Marconi G., Albertini E., Businelli, D. (2018). Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Frontiers in Plant Science, 27 (9): 389.
  • Brown, K.M., Arthur, J.R. 2001. Selenium, selenoproteins and human health: a review. Public Health Nutrition, 4: 593–599.
  • Cappa, J. J., Pilon-Smits, E.A.H. 2014. Evolutionary aspects of hyperaccumulation. Planta, 239: 267–275.
  • Carey, A.M., Scheckel, K.G., Lombi, E., Newville, M., Choi, Y., Norton, G.J., Charnock, J.M., Feldman, J., Price, A.H., Meharg, A.A. 2010. Grain unloading of arsenic species in rice (Oryza sativa L.). Plant Physiology, 152: 309–319.
  • Carey, A., Lombi, E., Donner, E. et al. A review of recent developments in the speciation and location of arsenic and selenium in rice grain. Anal Bioanal Chem 402, 3275–3286 (2012).
  • Cartes, P., Jara, A.A., Pinilla, L., Rosas, A., Mora, M.L. 2010. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annals of Applied Biology, 156: 297–307.
  • Chu, J., Yao, X., Zhang, Z. 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research, 136: 355–363.
  • Ciarmiello, L.F., Woodrow, P., Fuggi, A., Pontecorvo, G., Carillo, P. 2011. Plant Genes for Abiotic Stress. Shanker, A., Venkateswarlu B. (Eds). Abiotic Stress in Plants – Mechanisms and Adaptations. InTech, Croatia, pp. 283–308.
  • Çakmak İ., Öztürk L., Başağa H., Cekic C., Taner S., Irmak S., Geren H., Kılıç H., Aydın N., Avcı M., Gezgin S. 2009. Türkiye’de seçilmiş bölgelerde buğdayların ve toprakların selenyum konsantrasyonunun araştırılması, selenyum gübrelemesine buğdayın reaksiyonu ve selenyumca zengin genotiplerin fizyolojik olarak karakterizasyonu, TÜBİTAK Projesi Sonuç Raporu. 178 s.
  • Djanaguiraman, M., Devi, D.D., Shanker, A.K., Seeba, A., Bangarusamy, U. 2005. Selenium-an antioxidative protectant in soybean during senescence. Plant and Soil, 272: 77–86.
  • Ekelund N.G.A., Danilov, R.A. 2001. The influence of selenium on photosynthesis and "light-enhanced dark respiration" (LEDR) in the flagellate Euglena gracilis after exposure to ultraviolet radiation. Aquatic Sciences, 63: 457–465.
  • Elkelish, A.A., Soliman, M.H., Alhaithlould, H.A., El-Esawi, M.A. 2019. Selenium protects wheat seedlings against salt stressmediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiology and Biochemistry, 137: 144–153.
  • Emam, M.M., Khattab, H.E., Helal, N.M., Deraz, A.E. 2014. Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Australian Journal of Crop Science, 8: 596–605.
  • Feng, R., Chaoyang, W., Tu, S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87: 58–68.
  • Feng, R., Wei, C., Tu, S., Sun, X. 2009. Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions, Environmental and Experimental Botany, 65: 363–368.
  • Goldhaber, S.B. 2003. Trace element risk assessment: essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38: 232– 242.
  • Gökbulut, T. 2010. Bazı buğday çeşitlerinde selenyum birikimi ve selenyum toksisitesinin antioksidan enzim aktivitesine etkisi. Yüksek Lisans Tezi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü, 112 s, Kayseri.
  • Habibi, G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica, 101: 31–39.
  • Haktanır, K., Arcak, S. 1998. Çevre Kirliliği. Ankara Üniversitesi Ziraat Fakültesi, Ders Kitabı, Yayın No: 1503, 457 s, Ankara.
  • Hamilton, S. J. 2004. Review of selenium toxicity in the aquatic food chain. Science of The Total Environment, 326: 1–31.
  • Harmankaya, M. 2009. Orta Anadolu Bölgesinde Toprakların ve Buğdayın Selenyum Düzeyinin Belirlenmesi ve Selenyum Gübrelemesine Farklı Buğday Genotiplerinin Tepkisinin Araştırılması. Doktora Tezi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 129 s, Konya.
  • Harris, J., Schneberg, K.A., Pilon-Smits E.A. 2014. Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239: 479–491.
  • Hartikainen, H., Xue, T. 1999. The promotiv effect of selenium on plant growth as triggered by ultraviolet radiation. Journal of Environmental Quality, 28: 1372–1375.
  • Hasanuzzaman, M., Hossain, M.A., Fujita, M. 2010. Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. Journal of Plant Sciences, 5: 354–375.
  • Hashem, H.A., Hassanein, R.A., Bekheta, M.A., El-Kady, F.A. 2013. Protective role of selenium in canola (Brassica napus L.) plant subjected to salt stress. The Egyptian Journal of Experimental Biology (Botany), 9 (2): 199–211.
  • Hawrylak-Nowak, B. 2009. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research, 132: 259–269.
  • Hawrylak-Nowak B., Matraszek, R., Szymańska, M. 2010. Selenium modifies the effect of short-term chilling stress on cucumber plants. Biological Trace Element Research, 138 (1–3): 307–15.
  • Irmak, S., Semercioğlu, T. 2012. Çukurova Bölgesi’nde Yetiştirilen Bazı Buğday (Triticum spp.) Çeşitlerinde Toprak-Bitki Selenyum İçeriği Arasındaki İlişki. Tarım Bilimleri Araştırma Dergisi 5 (2): 19-23.
  • Ibrahim, H. M. (2014). and Reduces Oxidative Stress on Drought—Stressed Wheat (T riticum aestivum L.) Plants. Asian Journal of Plant Sciences, 13(3), 120-128.
  • Ibrahim, M.F.M., Ibrahim, H.A. 2016. Assessment of Selenium Role in Promoting or Inhibiting Potato Plants under Water Stress. Journal of Horticultural Science and Ornamental Plants, 8 (3): 125–139.
  • Jiang, C., Zu, C., Shen, J., Shao, F., Li, T. 2015. Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta Societatis Botanicorum Poloniae, 84 (1): 71–77.
  • Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H., Li, D. 2017. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7:42039. doi: 10.1038/srep42039.
  • Kacar, B., Katkat, A.V. 1998. Bitki Besleme. Uludağ Üniversitesi Güçlendirme Vakfı Yayın No: 127, VİPAŞ Yayınları: 3, Bursa.
  • Keling, H., Ling, Z., Jitao, W., Yang, Y. 2013. Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soietatis Botanicorum Poloniae, 82: 193–197.
  • Khattab, H.I., Emam, M.A., Emam, M.M., Helal, N.M., Mohamed, M.R. 2014. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biologia Plantarum, 58: 265–273.
  • Kikkert, J., Berkelaar, E. 2013. Plant uptake and translocation of inorganic and organic forms of selenium. Archives Environmental Contamination and Toxicology, 65: 458–465.
  • Kong, L., Wang, M., Bi, D. 2005. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation, 45: 155–163.
  • Liu, D., Li, H., Wang, Y., Ying, Z., Bian, Z., Zhu, W., ... & Jiang, D. (2017). How Exogenous Selenium Affects Anthocyanin Accumulation and Biosynthesis-Related Gene Expression in Purple Lettuce. Polish Journal of Environmental Studies, 26(2).
  • Lyons, G., Stangoulis, J., Graham, R. 2003. High-Selenium Wheat: Biofortification For Better Health. Nutrition Research Reviews, 16: 45–60.
  • Malerba, M., & Cerana, R. (2018). Effect of selenium on the responses induced by heat stress in plant cell cultures. Plants, 7(3), 64.
  • Malik, J.A., Goel, S., Kaur, N., Sharma, S., Singh, I., Nayyar, H. 2012. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 77: 242–248.
  • Manaf, H.H. 2016. Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. Annals of Agricultural Sciences, 61: 41–48.
  • Natasha, N., Shahid, M., Niazi, N.K., Khalid, S., Murtaza, B., Bibi, I., Rashid, M.I. 2018. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 234: 915–934.
  • Pandey, C., Gupta, M. 2015. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. Journal of Hazardous Materials, 287: 384–391.
  • Pedrero, Z., Madrid, Y., Hartikainen, H., Camara, C. 2008. Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. Journal of Agricultural and Food Chemistry, 56: 266–271.
  • Proietti, P., Nasinia, L., Del Buonoa, D., D'amatoa, R, Tedeschinib, E, Businellia, D. 2013. Selenium protects olive (Olea europaea L.) from drought stress. Scientia Horticulturae, 164: 165–171.
  • Ribeiro, D. M., Silva Junior, D. D., Cardoso, F. B., Martins, A. O., Silva, W. A., Nascimento, V. L., & Araújo, W. L. (2016). Growth inhibition by selenium is associated with changes in primary metabolism and nutrient levels in Arabidopsis thaliana. Plant, cell & environment, 39(10), 2235-2246.
  • Schertl, P., & Braun, H. P. (2014). Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science, 5, 163
  • Seppänen, M., Turakainen, M., Hartikainen, H. 2003. Selenium effects on oxidative stress in potato. Plant Science. 165: 311–319.
  • Shekari, F., Abbasi, A, Mustafavi, S.H. 2015. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. Journal of Saudi Society of Agricultural Sciences, 16: 367–374.
  • Sieprawska, A., Kornaś, A, Filek, M. 2015. Involvement of selenium in protective mechanisms of plants under environmental stress conditions–review. Acta Biologica Cracoviensia Series Botanica, 57: 1–12.
  • Sillanpää, M., Jansson, H. 1992. Status of Cadmium, Lead, Cobalt and Selenium in Soils and Plants of Thirty Countries, FAO Soils Bulletin 65 Rome, , Italy: Food and Agricultural Organization of the United Nations.
  • Skillman, J.B., Griffin, K.L., Earll, S., Kusama, M. 2011. Photosynthetic productivity: can plants do better? In: Pirajin JCM (Eds) Thermodynamics-systems in equilibrium and non-equilibrium. InTech, Shangai, pp 36–68.
  • Srivastava, M., Maa, L.Q., Rathinasabapathib, B., Srivastava P. 2009. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresource Technology. 100 (3): 1115–1121.
  • Tadina, N., Germ, M., Kreft, I., Breznik, B., & Gaberščik, A. (2007). Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. Photosynthetica, 45(3), 472-476.
  • Turakainen, M., Hartikainen, H., Ekholm, P., Seppanen, M. 2006. Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum L.) tubers supplemented with selenate. Journal of Agricultural and Food Chemistry, 54: 8617–8622.
  • Türkmen, N. 2010. Toprak özellikleri ile selenyum yarayışlılığı arasındaki ilişkiler ve sarımsağın selenyum ile zenginleştirilmesi. Doktora Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, 192 s, Ankara.
  • Valkama, E., Kivimäenpää, M., Hartikainen, H., Wulff, A. 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria x ananassa) and barley (Hordeum vulgare) treated in the field. Agricultural and Forest Meteorology, 120: 267–278.
  • Vorobets, N. 2006. Glutatione peroxidase activity in sunflower shoots exposed to lead and selenium. Annales Universitatis Mariae Curie-Sklodowska, 19: 151–154.
  • Wang, C.Q. 2011. Water-stress mitigation by selenium in Trifolium repens L. Journal of Plant Nutrition and Soil Science, 174 (2): 276–282.
  • White, P.J. 2017. The Genetics of Selenium Accumulation by Plants. In: Pilon-Smits E., Winkel L., Lin ZQ. (Eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham.
  • Xiaoqin, Y., Jianzhou, C., Guangyin, W. 2009. Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiologiae Plantarum, 31: 1031–1036.
  • Yao ,X., Chu, J., He, X., Ba, C. 2011. Protective role of selenium in wheat seedlings subjected to enhanced UV-B radiation. Russian Journal of Plant Physiology, 58 (2): 283–289.
  • Yao, X., Chu, J., Wang, G. 2009. Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research, 130: 283–290.
  • Zhu, Y.G., Pilon-Smits, E.A.H., Zhao, F.J., Williams, P.N., Meharg, A.A. 2009. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Science, 14: 436–442.
APA Yavas İ, ÇINAR V, Unay A (2020). Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. , 840 - 849. 10.31590/ejosat.685702
Chicago Yavas İlkay,ÇINAR Volkan Mehmet,Unay Aydin Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. (2020): 840 - 849. 10.31590/ejosat.685702
MLA Yavas İlkay,ÇINAR Volkan Mehmet,Unay Aydin Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. , 2020, ss.840 - 849. 10.31590/ejosat.685702
AMA Yavas İ,ÇINAR V,Unay A Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. . 2020; 840 - 849. 10.31590/ejosat.685702
Vancouver Yavas İ,ÇINAR V,Unay A Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. . 2020; 840 - 849. 10.31590/ejosat.685702
IEEE Yavas İ,ÇINAR V,Unay A "Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri." , ss.840 - 849, 2020. 10.31590/ejosat.685702
ISNAD Yavas, İlkay vd. "Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri". (2020), 840-849. https://doi.org/10.31590/ejosat.685702
APA Yavas İ, ÇINAR V, Unay A (2020). Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. Avrupa Bilim ve Teknoloji Dergisi, 0(18), 840 - 849. 10.31590/ejosat.685702
Chicago Yavas İlkay,ÇINAR Volkan Mehmet,Unay Aydin Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. Avrupa Bilim ve Teknoloji Dergisi 0, no.18 (2020): 840 - 849. 10.31590/ejosat.685702
MLA Yavas İlkay,ÇINAR Volkan Mehmet,Unay Aydin Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. Avrupa Bilim ve Teknoloji Dergisi, vol.0, no.18, 2020, ss.840 - 849. 10.31590/ejosat.685702
AMA Yavas İ,ÇINAR V,Unay A Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. Avrupa Bilim ve Teknoloji Dergisi. 2020; 0(18): 840 - 849. 10.31590/ejosat.685702
Vancouver Yavas İ,ÇINAR V,Unay A Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri. Avrupa Bilim ve Teknoloji Dergisi. 2020; 0(18): 840 - 849. 10.31590/ejosat.685702
IEEE Yavas İ,ÇINAR V,Unay A "Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri." Avrupa Bilim ve Teknoloji Dergisi, 0, ss.840 - 849, 2020. 10.31590/ejosat.685702
ISNAD Yavas, İlkay vd. "Bitkilerde Abiyotik Stres Koşullarında Selenyum Metabolizması ve Fizyolojik Etkileri". Avrupa Bilim ve Teknoloji Dergisi 18 (2020), 840-849. https://doi.org/10.31590/ejosat.685702