Yıl: 2020 Cilt: 23 Sayı: 6 Sayfa Aralığı: 324 - 333 Metin Dili: İngilizce İndeks Tarihi: 17-11-2020

Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation

Öz:
Objective: We aimed to find crucial microRNAs (miRNAs) associated with the development of atrial fibrillation (AF), and then try to elucidate thepossible molecular mechanisms of miRNAs in AF.Methods: The miRNA microarray, GSE68475, which included 10 right atrial appendage samples from patients with persistent AF and 11 samplesfrom patients with normal sinus rhythm, was used for the analysis. After data preprocessing, differentially expressed miRNAs were screened using limma. Target genes of miRNAs were predicted using miRWalk2.0. We then conducted functional enrichment analyses for miRNA and targetgenes. Protein-protein interaction (PPI) network and module analyses for target genes were performed. Finally, transcription factors (TFs)-targetgenes regulatory network was predicted and constructed.Results: Seven genes, including CAMK2D, IGF2R, PPP2R2A, PAX6, POU3F2, YWHAE, and AP2A2, were targeted by TFs. Among these sevengenes, CAMK2D (targeted by miR-31-5p), IGF2R (targeted by miR-204-5p), PAX6 (targeted by miR-223-3p), POU3F2 (targeted by miR-204-5p),YWHAE (targeted by miR-31-5p), and AP2A2 (targeted by miR-204-5p) belonged to the top 10 degree genes in the PPI network. Notably, MiR204-5p, miR-31-5p, and miR-223-3p had more target genes. Besides, CAMK2D was enriched in some pathways, such as adrenergic signaling incardiomyocytes pathway and cAMP signaling pathway. YWHAE was enriched in the Hippo signaling pathway.Conclusion: miR-31-5p played a crucial role in cardiomyocytes by targeting CAMK2D and YWHAE via cAMP and Hippo signaling pathways. miR204 was involved in the progression of AF by regulating its target genes IGF2R, POU3F2, and AP2A2. On the other hand, miR-223-3p functionedin AF by targeting PAX6, which was associated with the regulation of apoptosis in AF. This study would provide a theoretical basis and potentialtherapeutic targets for the treatment of AF. (Anatol J Cardiol 2020; 23: 324-33)
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Li L, Mao H, Ishwaran H, Rajeswaran J, Ehrlinger J, Blackstone EH. Estimating the prevalence of atrial fibrillation from a threeclass mixture model for repeated diagnoses. Biom J 2017; 59: 331- 43.
  • 2. Anumonwo JM, Kalifa J. Risk factors and genetics of atrial fibrillation. Cardiol Clin 2014; 32: 485-94.
  • 3. Xiao J, Liang D, Zhao H, Liu Y, Zhang H, Lu X, et al. 2-Aminoethoxydiphenyl borate, a inositol 1,4,5-triphosphate receptor inhibitor, prevents atrial fibrillation. Exp Biol Med (Maywood) 2010; 235: 862-8.
  • 4. Qi J, Xiao J, Zhang Y, Li J, Liu Y, Li P, et al. Effects of potassium channel blockers on changes in refractoriness of atrial cardiomyocytes induced by stretch. Exp Biol Med (Maywood) 2009; 234: 779-84.
  • 5. Nattel S. New ideas about atrial fibrillation 50 years on. Nature 2002; 415: 219-26.
  • 6. Duffy HS. The ever-shrinking world of cardiac ion channel remodeling: the role of microRNAs in heart disease. Heart Rhythm 2009; 6: 1810-1.
  • 7. Lee KE, Chang BC, Park S, Gwak HS. Effects of single nucleotide polymorphisms in c-Myc on stable warfarin doses in patients with cardiac valve replacements. Pharmacogenomics 2015; 16: 1101-8.
  • 8. Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 2010; 26: 40-9.
  • 9. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 2010; 122: 2378-87.
  • 10. Li Y, Tan W, Ye F, Xue F, Gao S, Huang W, et al. Identification of microRNAs and genes as biomarkers of atrial fibrillation using a bioinformatics approach. J Int Med Res 2019; 47: 3580-9.
  • 11. Harling L, Lambert J, Ashrafian H, Darzi A, Gooderham NJ, Athanasiou T. Elevated serum microRNA 483-5p levels may predict patients at risk of post-operative atrial fibrillation. Eur J Cardiothorac Surg 2017; 51: 73-8.
  • 12. Zhao Y, Yuan Y, Qiu C. Underexpression of CACNA1C Caused by Overexpression of microRNA-29a Underlies the Pathogenesis of Atrial Fibrillation. Med Sci Monit 2016; 22: 2175-81.
  • 13. Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart rhythm 2009; 6: 1802-9.
  • 14. Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang N, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J Clin Invest 2013; 123: 1939-51.
  • 15. Morishima M, Iwata E, Nakada C, Tsukamoto Y, Takanari H, Miyamoto S, et al. Atrial Fibrillation-Mediated Upregulation of miR-30d Regulates Myocardial Electrical Remodeling of the G-Protein-Gated K(+) Channel, IK.ACh. Circ J 2016; 80: 1346-55.
  • 16. Smyth GK. Limma: linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds.). Springer, New York; 2005: p.397–420.
  • 17. Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, et al. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol 2014; 14: 169.
  • 18. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12: 697.
  • 19. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-504.
  • 20. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27-30.
  • 21. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16: 284-7.
  • 22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25-9.
  • 23. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447-52.
  • 24. Bandettini WP, Kellman P, Mancini C, Booker OJ, Vasu S, Leung SW, et al. MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study. J Cardiovasc Magn Reson 2012; 14: 83.
  • 25. Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 2005; 33: W741-8.
  • 26. Igarashi T, Niwano S, Niwano H, Yoshizawa T, Nakamura H, Fukaya H, et al. Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 2018; 33: 1258-65.
  • 27. Liu Z, Finet JE, Wolfram JA, Anderson ME, Ai X, Donahue JK. Calcium/calmodulin-dependent protein kinase II causes atrial structural remodeling associated with atrial fibrillation and heart failure. Heart Rhythm 2019; 16: 1080-8.
  • 28. Yao Q, Song Z, Tong S, Wan Y, Cheng J, Ding X. e0115 Overexpression and inhibition of Camk2d gene in primary myocardial cells by lentivirus. Heart 2010; 96 (Suppl 3): A37.
  • 29. Cooper LL, Odening KE, Ziv O, Chaves L, Schofield L, Choi BR, et al. The aging rabbit heart as a model for cardiac aging. The FASEB Journal 2010: 1 supplement: 595.6.
  • 30. Jesel L, Abbas M, Toti F, Cohen A, Arentz T, Morel O. Microparticles in atrial fibrillation: a link between cell activation or apoptosis, tissue remodelling and thrombogenicity. Int J Cardiol 2013; 168: 660-9.
  • 31. Brunelli L, Cieslik KA, Michalik L, Wahli W, Yost H. Activation of PPAR delta Regulates Ywhae (Encoding 14-3-3 epsilon Protein), a Gene Required for Ventricular Morphogenesis. Basic Cardiovascular Sciences Conference 2009; 105: E15.
  • 32. Kosaka Y, Cieslik KA, Li L, Lezin G, Maguire CT, Saijoh Y, et al. 14-3- 3ε plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle. Mol Cell Biol 2012; 32: 5089-102.
  • 33. Allouis M, Le Bouffant F, Wilders R, Peroz D, Schott JJ, Noireaud J, et al. 14-3-3 is a regulator of the cardiac voltage-gated sodium channel Nav1.5. Circ Res 2006; 98: 1538-46.
  • 34. Choe CU, Schulze-Bahr E, Neu A, Xu J, Zhu ZI, Sauter K, et al. Cterminal HERG (LQT2) mutations disrupt IKr channel regulation through 14-3-3epsilon. Hum Mol Genet 2006; 15: 2888-902.
  • 35. Buroker NE, Huang JY, Barboza J, Ledee DR, Eastman RJ Jr., Reinecke H, et al. The adaptor-related protein complex 2, alpha 2 subunit (AP2alpha2) gene is a peroxisome proliferator-activated receptor cardiac target gene. Protein J 2012; 31: 75-83.
  • 36. Chu CH, Tzang BS, Chen LM, Kuo CH, Cheng YC, Chen LY, et al. IGFII/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Galphaq interaction and protein kinase C-alpha/CaMKII activation in H9c2 cardiomyoblast cells. J Endocrinol 2008; 197: 381-90.
  • 37. Budhram-Mahadeo V, Fujita R, Bitsi S, Sicard P, Heads R. Co-expression of POU4F2/Brn-3b with p53 may be important for controlling expression of pro-apoptotic genes in cardiomyocytes following ischaemic/hypoxic insults. Cell Death Dis 2014; 5: e1503.
  • 38. Reilly S, Liu X, Carnicer R, Rajakumar T, Sayeed R, Krasopoulos G, et al. Evaluation of the role of miR-31-dependent reduction in dystrophin and nNOS on atrial-fibrillation-induced electrical remodelling in man. Lancet 2015; 385 Suppl 1: S82.
  • 39. Yuan S, Xin XU, Fengping HE, Zhang S, Fan W, Cardiology DO. The expression and clinical value of miR-223 and MMP-9 in right atrium and blood serum in patients with atrial fibrillation. Journal of Molecular Diagnostics & Therapy 2014; 6: 317-24.
  • 40. Dai H, Yin XL. The changes of plasma miR-18a,miR-27b,miR130a,miR-204 in patients with pulmonary arterial hypertension due to congenital heart disease. J Am Coll Cardiol 2014; 64 (Supplement 21): C190.
  • 41. Robertson A, Cartwright EJ, Oceandy D. 168 Targeting The Hippo Signalling Pathway to Enhance the Therapeutic Potential of iPSDerived Cardiomyocytes. Heart 2016; 102 (Suppl 6): A118.1.
  • 42. Ritchie RH, Rosenkranz AC, Huynh LP, Stephenson T, Kaye DM, Dusting GJ. Activation of IP prostanoid receptors prevents cardiomyocyte hypertrophy via cAMP-dependent signaling. Am J Physiol Heart Circ Physiol 2004; 287: H1179-85.
  • 43. Pfister A, Osman A. The VKORC1 promoter is occupied by c-Myc transcription factor in HepG2 cells. Thromb Res 2010; 126: e150-1.
  • 44. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009; 113: 784-92.
  • 45. Harigae H. GATA transcription factors and hematological diseases. Tohoku J Exp Med 2006; 210: 1-9.
  • 46. Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, et al. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 2001; 15: 839-44.
  • 47. Mwinyi J, Nekvindova J, Cavaco I, Hofmann Y, Pedersen RS, Landman E, et al. New insights into the regulation of CYP2C9 gene expression: the role of the transcription factor GATA-4. Drug Metab Dispos 2010; 38: 415-21.
APA ZHANG H, YANG G, SHI N, SHAN J, LI X, WU Y, XU Y, YUAN Y (2020). Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. , 324 - 333.
Chicago ZHANG Huili,YANG Guangming,SHI Ning Zhong,SHAN Jun,LI Xiaona,WU Yanhai,XU Yazhou,YUAN Ye Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. (2020): 324 - 333.
MLA ZHANG Huili,YANG Guangming,SHI Ning Zhong,SHAN Jun,LI Xiaona,WU Yanhai,XU Yazhou,YUAN Ye Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. , 2020, ss.324 - 333.
AMA ZHANG H,YANG G,SHI N,SHAN J,LI X,WU Y,XU Y,YUAN Y Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. . 2020; 324 - 333.
Vancouver ZHANG H,YANG G,SHI N,SHAN J,LI X,WU Y,XU Y,YUAN Y Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. . 2020; 324 - 333.
IEEE ZHANG H,YANG G,SHI N,SHAN J,LI X,WU Y,XU Y,YUAN Y "Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation." , ss.324 - 333, 2020.
ISNAD ZHANG, Huili vd. "Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation". (2020), 324-333.
APA ZHANG H, YANG G, SHI N, SHAN J, LI X, WU Y, XU Y, YUAN Y (2020). Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. The Anatolian Journal of Cardiology, 23(6), 324 - 333.
Chicago ZHANG Huili,YANG Guangming,SHI Ning Zhong,SHAN Jun,LI Xiaona,WU Yanhai,XU Yazhou,YUAN Ye Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. The Anatolian Journal of Cardiology 23, no.6 (2020): 324 - 333.
MLA ZHANG Huili,YANG Guangming,SHI Ning Zhong,SHAN Jun,LI Xiaona,WU Yanhai,XU Yazhou,YUAN Ye Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. The Anatolian Journal of Cardiology, vol.23, no.6, 2020, ss.324 - 333.
AMA ZHANG H,YANG G,SHI N,SHAN J,LI X,WU Y,XU Y,YUAN Y Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. The Anatolian Journal of Cardiology. 2020; 23(6): 324 - 333.
Vancouver ZHANG H,YANG G,SHI N,SHAN J,LI X,WU Y,XU Y,YUAN Y Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation. The Anatolian Journal of Cardiology. 2020; 23(6): 324 - 333.
IEEE ZHANG H,YANG G,SHI N,SHAN J,LI X,WU Y,XU Y,YUAN Y "Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation." The Anatolian Journal of Cardiology, 23, ss.324 - 333, 2020.
ISNAD ZHANG, Huili vd. "Possible key microRNAs and corresponding molecular mechanisms for atrial fibrillation". The Anatolian Journal of Cardiology 23/6 (2020), 324-333.